She*_*don 6 python performance numpy
我需要将一个非常“高”的两列数组写入文本文件,而且速度非常慢。我发现如果我将数组重塑为更宽的数组,写入速度会快得多。例如
import time
import numpy as np
dataMat1 = np.random.rand(1000,1000)
dataMat2 = np.random.rand(2,500000)
dataMat3 = np.random.rand(500000,2)
start = time.perf_counter()
with open('test1.txt','w') as f:
np.savetxt(f,dataMat1,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('test2.txt','w') as f:
np.savetxt(f,dataMat2,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('test3.txt','w') as f:
np.savetxt(f,dataMat3,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
Run Code Online (Sandbox Code Playgroud)
在三个数据矩阵中元素数量相同的情况下,为什么最后一个比其他两个更耗时?有没有办法加快写入“高”数据数组的速度?
正如hpaulj 指出的那样,savetxt正在循环遍历X每一行并单独格式化每一行:
for row in X:
try:
v = format % tuple(row) + newline
except TypeError:
raise TypeError("Mismatch between array dtype ('%s') and "
"format specifier ('%s')"
% (str(X.dtype), format))
fh.write(v)
Run Code Online (Sandbox Code Playgroud)
我认为这里的主要时间杀手是所有的字符串插值调用。如果我们将所有字符串插值打包到一个调用中,事情会变得更快:
with open('/tmp/test4.txt','w') as f:
fmt = ' '.join(['%g']*dataMat3.shape[1])
fmt = '\n'.join([fmt]*dataMat3.shape[0])
data = fmt % tuple(dataMat3.ravel())
f.write(data)
Run Code Online (Sandbox Code Playgroud)
import io
import time
import numpy as np
dataMat1 = np.random.rand(1000,1000)
dataMat2 = np.random.rand(2,500000)
dataMat3 = np.random.rand(500000,2)
start = time.perf_counter()
with open('/tmp/test1.txt','w') as f:
np.savetxt(f,dataMat1,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test2.txt','w') as f:
np.savetxt(f,dataMat2,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test3.txt','w') as f:
np.savetxt(f,dataMat3,fmt='%g',delimiter=' ')
end = time.perf_counter()
print(end-start)
start = time.perf_counter()
with open('/tmp/test4.txt','w') as f:
fmt = ' '.join(['%g']*dataMat3.shape[1])
fmt = '\n'.join([fmt]*dataMat3.shape[0])
data = fmt % tuple(dataMat3.ravel())
f.write(data)
end = time.perf_counter()
print(end-start)
Run Code Online (Sandbox Code Playgroud)
报告
0.1604848340011813
0.17416274400056864
0.6634929459996783
0.16207673999997496
Run Code Online (Sandbox Code Playgroud)