Hau*_*aus 36 c# virtual-functions micro-optimization
我有一些经过大量优化的数学函数需要1-2 nanoseconds完成.这些功能每秒被称为数亿次,因此尽管性能已经非常出色,但呼叫开销仍是一个问题.
为了保持程序的可维护性,提供这些方法的类继承了一个IMathFunction接口,以便其他对象可以直接存储特定的数学函数并在需要时使用它.
public interface IMathFunction
{
double Calculate(double input);
double Derivate(double input);
}
public SomeObject
{
// Note: There are cases where this is mutable
private readonly IMathFunction mathFunction_;
public double SomeWork(double input, double step)
{
var f = mathFunction_.Calculate(input);
var dv = mathFunction_.Derivate(input);
return f - (dv * step);
}
}
Run Code Online (Sandbox Code Playgroud)
由于消费代码使用它,这种接口与直接呼叫相比造成了巨大的开销.一个直接调用需要1-2ns,而虚拟接口调用需要8-9ns.显然,接口的存在及其随后的虚拟呼叫转换是这种情况的瓶颈.
如果可能的话,我想保留可维护性和性能.有没有办法在实例化对象时将虚函数解析为直接调用,以便所有后续调用都能够避免开销?我认为这将涉及用IL创建委托,但我不知道从哪里开始.
Cor*_*son 36
所以这有明显的局限性,不应该在任何有接口的地方一直使用,但是如果你有一个真正需要最大化perf的地方你可以使用泛型:
public SomeObject<TMathFunction> where TMathFunction: struct, IMathFunction
{
private readonly TMathFunction mathFunction_;
public double SomeWork(double input, double step)
{
var f = mathFunction_.Calculate(input);
var dv = mathFunction_.Derivate(input);
return f - (dv * step);
}
}
Run Code Online (Sandbox Code Playgroud)
而不是传递接口,将您的实现作为TMathFunction传递.这将避免由于接口而导致的vtable查找,并允许内联.
注意struct这里的使用很重要,因为泛型将通过接口访问类.
一些实施:
我做了一个简单的IMathFunction实现测试:
class SomeImplementationByRef : IMathFunction
{
public double Calculate(double input)
{
return input + input;
}
public double Derivate(double input)
{
return input * input;
}
}
Run Code Online (Sandbox Code Playgroud)
...以及结构版本和抽象版本.
所以,这是接口版本发生的情况.您可以看到它相对低效,因为它执行两个级别的间接:
return obj.SomeWork(input, step);
sub esp,40h
vzeroupper
vmovaps xmmword ptr [rsp+30h],xmm6
vmovaps xmmword ptr [rsp+20h],xmm7
mov rsi,rcx
vmovsd qword ptr [rsp+60h],xmm2
vmovaps xmm6,xmm1
mov rcx,qword ptr [rsi+8] ; load mathFunction_ into rcx.
vmovaps xmm1,xmm6
mov r11,7FFED7980020h ; load vtable address of the IMathFunction.Calculate function.
cmp dword ptr [rcx],ecx
call qword ptr [r11] ; call IMathFunction.Calculate function which will call the actual Calculate via vtable.
vmovaps xmm7,xmm0
mov rcx,qword ptr [rsi+8] ; load mathFunction_ into rcx.
vmovaps xmm1,xmm6
mov r11,7FFED7980028h ; load vtable address of the IMathFunction.Derivate function.
cmp dword ptr [rcx],ecx
call qword ptr [r11] ; call IMathFunction.Derivate function which will call the actual Derivate via vtable.
vmulsd xmm0,xmm0,mmword ptr [rsp+60h] ; dv * step
vsubsd xmm7,xmm7,xmm0 ; f - (dv * step)
vmovaps xmm0,xmm7
vmovaps xmm6,xmmword ptr [rsp+30h]
vmovaps xmm7,xmmword ptr [rsp+20h]
add rsp,40h
pop rsi
ret
Run Code Online (Sandbox Code Playgroud)
这是一个抽象类.它的效率更高一些,但只能忽略不计:
return obj.SomeWork(input, step);
sub esp,40h
vzeroupper
vmovaps xmmword ptr [rsp+30h],xmm6
vmovaps xmmword ptr [rsp+20h],xmm7
mov rsi,rcx
vmovsd qword ptr [rsp+60h],xmm2
vmovaps xmm6,xmm1
mov rcx,qword ptr [rsi+8] ; load mathFunction_ into rcx.
vmovaps xmm1,xmm6
mov rax,qword ptr [rcx] ; load object type data from mathFunction_.
mov rax,qword ptr [rax+40h] ; load address of vtable into rax.
call qword ptr [rax+20h] ; call Calculate via offset 0x20 of vtable.
vmovaps xmm7,xmm0
mov rcx,qword ptr [rsi+8] ; load mathFunction_ into rcx.
vmovaps xmm1,xmm6
mov rax,qword ptr [rcx] ; load object type data from mathFunction_.
mov rax,qword ptr [rax+40h] ; load address of vtable into rax.
call qword ptr [rax+28h] ; call Derivate via offset 0x28 of vtable.
vmulsd xmm0,xmm0,mmword ptr [rsp+60h] ; dv * step
vsubsd xmm7,xmm7,xmm0 ; f - (dv * step)
vmovaps xmm0,xmm7
vmovaps xmm6,xmmword ptr [rsp+30h]
vmovaps xmm7,xmmword ptr [rsp+20h]
add rsp,40h
pop rsi
ret
Run Code Online (Sandbox Code Playgroud)
因此,接口和抽象类都严重依赖分支目标预测来获得可接受的性能.即便如此,你可以看到还有更多的内容,所以最好的情况仍然相对缓慢,而最坏的情况是由于误预测导致的管道停滞.
最后这里是带结构的通用版本.您可以看到它的效率更高,因为所有内容都已完全内联,因此不涉及分支预测.它还具有删除大部分堆栈/参数管理的良好副作用,因此代码变得非常紧凑:
return obj.SomeWork(input, step);
push rax
vzeroupper
movsx rax,byte ptr [rcx+8]
vmovaps xmm0,xmm1
vaddsd xmm0,xmm0,xmm1 ; Calculate - got inlined
vmulsd xmm1,xmm1,xmm1 ; Derivate - got inlined
vmulsd xmm1,xmm1,xmm2 ; dv * step
vsubsd xmm0,xmm0,xmm1 ; f -
add rsp,8
ret
Run Code Online (Sandbox Code Playgroud)
我会将方法分配给代表.这允许您仍然对接口进行编程,同时避免接口方法解析.
public SomeObject
{
private readonly Func<double, double> _calculate;
private readonly Func<double, double> _derivate;
public SomeObject(IMathFunction mathFunction)
{
_calculate = mathFunction.Calculate;
_derivate = mathFunction.Derivate;
}
public double SomeWork(double input, double step)
{
var f = _calculate(input);
var dv = _derivate(input);
return f - (dv * step);
}
}
Run Code Online (Sandbox Code Playgroud)
为了回应@CoryNelson的评论,我做了测试,看看究竟是什么影响.我已经密封了函数类,但这似乎完全没有区别,因为我的方法不是虚拟的.
测试结果(以ns为单位的平均时间为1亿次迭代),在大括号中减去空方法时间:
空工作方法:1.48
接口:5.69(4.21)
代表:5.78(4.30)
密封等级:2.10(0.62)
等级:2.12(0.64)
委托版本时间与接口版本大致相同(确切时间从测试执行到测试执行).虽然对班级的工作速度提高了6.8倍(比较时间减去空工作方法的时间)!这意味着我与代表合作的建议没有用!
让我感到惊讶的是,我期望接口版本的执行时间要长得多.由于这种测试不代表OP代码的确切上下文,因此其有效性是有限的.
static class TimingInterfaceVsDelegateCalls
{
const int N = 100_000_000;
const double msToNs = 1e6 / N;
static SquareFunctionSealed _mathFunctionClassSealed;
static SquareFunction _mathFunctionClass;
static IMathFunction _mathFunctionInterface;
static Func<double, double> _calculate;
static Func<double, double> _derivate;
static TimingInterfaceVsDelegateCalls()
{
_mathFunctionClass = new SquareFunction();
_mathFunctionClassSealed = new SquareFunctionSealed();
_mathFunctionInterface = _mathFunctionClassSealed;
_calculate = _mathFunctionInterface.Calculate;
_derivate = _mathFunctionInterface.Derivate;
}
interface IMathFunction
{
double Calculate(double input);
double Derivate(double input);
}
sealed class SquareFunctionSealed : IMathFunction
{
public double Calculate(double input)
{
return input * input;
}
public double Derivate(double input)
{
return 2 * input;
}
}
class SquareFunction : IMathFunction
{
public double Calculate(double input)
{
return input * input;
}
public double Derivate(double input)
{
return 2 * input;
}
}
public static void Test()
{
var stopWatch = new Stopwatch();
stopWatch.Start();
for (int i = 0; i < N; i++) {
double result = SomeWorkEmpty(i);
}
stopWatch.Stop();
double emptyTime = stopWatch.ElapsedMilliseconds * msToNs;
Console.WriteLine($"Empty Work method: {emptyTime:n2}");
stopWatch.Restart();
for (int i = 0; i < N; i++) {
double result = SomeWorkInterface(i);
}
stopWatch.Stop();
PrintResult("Interface", stopWatch.ElapsedMilliseconds, emptyTime);
stopWatch.Restart();
for (int i = 0; i < N; i++) {
double result = SomeWorkDelegate(i);
}
stopWatch.Stop();
PrintResult("Delegates", stopWatch.ElapsedMilliseconds, emptyTime);
stopWatch.Restart();
for (int i = 0; i < N; i++) {
double result = SomeWorkClassSealed(i);
}
stopWatch.Stop();
PrintResult("Sealed Class", stopWatch.ElapsedMilliseconds, emptyTime);
stopWatch.Restart();
for (int i = 0; i < N; i++) {
double result = SomeWorkClass(i);
}
stopWatch.Stop();
PrintResult("Class", stopWatch.ElapsedMilliseconds, emptyTime);
}
private static void PrintResult(string text, long elapsed, double emptyTime)
{
Console.WriteLine($"{text}: {elapsed * msToNs:n2} ({elapsed * msToNs - emptyTime:n2})");
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static double SomeWorkEmpty(int i)
{
return 0.0;
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static double SomeWorkInterface(int i)
{
double f = _mathFunctionInterface.Calculate(i);
double dv = _mathFunctionInterface.Derivate(i);
return f - (dv * 12.34534);
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static double SomeWorkDelegate(int i)
{
double f = _calculate(i);
double dv = _derivate(i);
return f - (dv * 12.34534);
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static double SomeWorkClassSealed(int i)
{
double f = _mathFunctionClassSealed.Calculate(i);
double dv = _mathFunctionClassSealed.Derivate(i);
return f - (dv * 12.34534);
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static double SomeWorkClass(int i)
{
double f = _mathFunctionClass.Calculate(i);
double dv = _mathFunctionClass.Derivate(i);
return f - (dv * 12.34534);
}
}
Run Code Online (Sandbox Code Playgroud)
[MethodImpl(MethodImplOptions.NoInlining)]如果方法是内联的,那么想法是阻止编译器在循环之前计算方法的地址.