在R中为字母数字字符串添加数字的有效方法

Mat*_*ina 5 string r stringr tidyr

我有一个data.frame由字母数字字符序列组成的id(例如id = c(A001, A002, B013)).我正在寻找一个简单的函数stringr或者stirngi很容易用这个字符串做数学运算(id + 1应该返回c(A002, A003, B014)).

我做了一个自定义函数来完成这个技巧,但是我觉得必须有一个更好/更有效/内部包的方式来实现这一点.

str_add_n <- function(df, string, n, width=3){

  string <- enquo(string)

  ## split the string using pattern
df <-  df %>%
    separate(!!string,
             into = c("text", "num"), 
             sep = "(?<=[A-Za-z])(?=[0-9])",
             remove=FALSE
    ) %>%
    mutate(num = as.numeric(num),
           num = num + n,
           num = stringr::str_pad(as.character(num),
                                  width = width,
                                  side = "left",
                                  pad = 0 
                                  )
           ) %>%
    unite(next_string, text:num, sep = "")


return(df)  
}
Run Code Online (Sandbox Code Playgroud)

让我们做一个玩具 df

df <- data.frame(id = c("A001", "A002", "B013"))
str_add_n(df, id, 1)
    id next_string
1 A001        A002
2 A002        A003
3 B013        B014
Run Code Online (Sandbox Code Playgroud)

再次,这是有效的,我想知道是否有更好的方法来做到这一点,所有调整欢迎!

UPDATE

基于建议的答案,我运行了一些基准测试,看起来两者都非常接近,我会倾向于str_add_n_2(我更改了名称以便能够运行两者,并采取了建议x<-as.character(x))

microbenchmark::microbenchmark(question = str_add_n(df, id, 1),
 answer = df %>% mutate_at(vars(id), funs(str_add_n_2(., 1))),
 string_add = df %>% mutate_at(vars(id), funs(string_add(as.character(.)))))
Run Code Online (Sandbox Code Playgroud)

哪个收益率

Unit: milliseconds
       expr      min       lq     mean   median       uq
   question 4.312094 4.448391 4.695276 4.570860 4.755748
     answer 2.932146 3.017874 3.191262 3.117627 3.240688
 string_add 3.388442 3.466466 3.699363 3.534416 3.682762
      max neval cld
 10.29253   100   c
  8.24967   100 a  
  9.05441   100  b 
Run Code Online (Sandbox Code Playgroud)

欢迎进行更多调整!

mar*_*kus 5

这是一种方法gsubfn

id <- c("A001", "A002", "B013")

library(gsubfn)
gsubfn("([0-9]+)", function(x) sprintf("%03.0f", as.numeric(x) + 1), id)
#[1] "A002" "A003" "B014"
Run Code Online (Sandbox Code Playgroud)

你可以把它变成一个函数

string_add <- function(string, add = 1, width = 3) {
  gsubfn::gsubfn("([0-9]+)", function(x) sprintf(paste0("%0", width, ".0f"), as.numeric(x) + add), string)
}

string_add(id, add = 10, width = 5)
#"A00011" "A00012" "B00023"
Run Code Online (Sandbox Code Playgroud)


r2e*_*ans 4

我建议基于字符串向量定义函数更容易,而不是对其进行硬编码以在框架中查找列;对于后者,您始终可以使用类似的东西mutate_at(vars(id,...), funs(str_add_n))

str_add_n <- function(x, n = 1L) {
  gr <- gregexpr("\\d+", x)
  reg <- regmatches(x, gr)
  widths <- nchar(reg)
  regmatches(x, gr) <- sprintf(paste0("%0", widths, "d"), as.integer(reg) + n)
  x
}

vec <- c("A001", "A002", "B013")
str_add_n(vec)
# [1] "A002" "A003" "B014"
Run Code Online (Sandbox Code Playgroud)

如果在一个框架中:

df <- data.frame(id = c("A001", "A002", "B013"), x = 1:3,
                 stringsAsFactors = FALSE)
library(dplyr)
df %>%
  mutate_at(vars(id), funs(str_add_n(., 3)))
#     id x
# 1 A004 1
# 2 A005 2
# 3 B016 3
Run Code Online (Sandbox Code Playgroud)

警告:这默默地需要 true character,而不是factor......可能的防御策略可能是添加x <- as.character(x)到函数定义中。


更新mutate_at已被取代,首选用途across是:

str_add_n <- function(x, n = 1L) {
  gr <- gregexpr("\\d+", x)
  reg <- regmatches(x, gr)
  widths <- nchar(reg)
  regmatches(x, gr) <- sprintf(paste0("%0", widths, "d"), as.integer(reg) + n)
  x
}

vec <- c("A001", "A002", "B013")
str_add_n(vec)
# [1] "A002" "A003" "B014"
Run Code Online (Sandbox Code Playgroud)

或者更直接

df <- data.frame(id = c("A001", "A002", "B013"), x = 1:3,
                 stringsAsFactors = FALSE)
library(dplyr)
df %>%
  mutate_at(vars(id), funs(str_add_n(., 3)))
#     id x
# 1 A004 1
# 2 A005 2
# 3 B016 3
Run Code Online (Sandbox Code Playgroud)