Bas*_*asj 6 python machine-learning keras
我知道如何在每个纪元后保存模型:
savemodel = ModelCheckpoint(filepath='models/model_{epoch:02d}-{loss:.2f}.h5')
model.fit(X, Y, batch_size=4, epochs=32, verbose=1, callbacks=[savemodel])
Run Code Online (Sandbox Code Playgroud)
如何使用自定义回调函数来记录某些信息:
def write_metrics():
with open('log.txt', 'a') as f: # append to the log file
f.write('{epoch:02d}: loss = {loss:.1f}')
model.fit(X, Y, batch_size=4, epochs=32, verbose=1, callbacks=[savemodel, write_metrics])
Run Code Online (Sandbox Code Playgroud)
?
使用此代码将无法工作,因为{loss}
和{epoch}
未在 中定义f.write('{epoch:02d}: loss = {loss:.1f}')
。
这是通过子类化的解决方案Callback
:
from keras.callbacks import Callback
class MyLogger(Callback):
def on_epoch_end(self, epoch, logs=None):
with open('log.txt', 'a+') as f:
f.write('%02d %.3f\n' % (epoch, logs['loss']))
Run Code Online (Sandbox Code Playgroud)
然后
mylogger = MyLogger()
model.fit(X, Y, batch_size=32, epochs=32, verbose=1, callbacks=[mylogger])
Run Code Online (Sandbox Code Playgroud)
甚至
model.fit(X, Y, batch_size=32, epochs=32, verbose=1, callbacks=[MyLogger()])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
3771 次 |
最近记录: |