获取每2d数组的累积计数

jez*_*ael 7 python arrays counter numpy cumulative-sum

我有一般数据,例如字符串:

np.random.seed(343)

arr = np.sort(np.random.randint(5, size=(10, 10)), axis=1).astype(str)
print (arr)
[['0' '1' '1' '2' '2' '3' '3' '4' '4' '4']
 ['1' '2' '2' '2' '3' '3' '3' '4' '4' '4']
 ['0' '2' '2' '2' '2' '3' '3' '4' '4' '4']
 ['0' '1' '2' '2' '3' '3' '3' '4' '4' '4']
 ['0' '1' '1' '1' '2' '2' '2' '2' '4' '4']
 ['0' '0' '1' '1' '2' '3' '3' '3' '4' '4']
 ['0' '0' '2' '2' '2' '2' '2' '2' '3' '4']
 ['0' '0' '1' '1' '1' '2' '2' '2' '3' '3']
 ['0' '1' '1' '2' '2' '2' '3' '4' '4' '4']
 ['0' '1' '1' '2' '2' '2' '2' '2' '4' '4']]
Run Code Online (Sandbox Code Playgroud)

如果累计值的计数器有差异,我需要重置计数,所以使用pandas.

首先创建DataFrame:

df = pd.DataFrame(arr)
print (df)
   0  1  2  3  4  5  6  7  8  9
0  0  1  1  2  2  3  3  4  4  4
1  1  2  2  2  3  3  3  4  4  4
2  0  2  2  2  2  3  3  4  4  4
3  0  1  2  2  3  3  3  4  4  4
4  0  1  1  1  2  2  2  2  4  4
5  0  0  1  1  2  3  3  3  4  4
6  0  0  2  2  2  2  2  2  3  4
7  0  0  1  1  1  2  2  2  3  3
8  0  1  1  2  2  2  3  4  4  4
9  0  1  1  2  2  2  2  2  4  4
Run Code Online (Sandbox Code Playgroud)

它如何适用于一列:

首先比较移位数据并添加累积总和:

a = (df[0] != df[0].shift()).cumsum()
print (a)
0    1
1    2
2    3
3    3
4    3
5    3
6    3
7    3
8    3
9    3
Name: 0, dtype: int32
Run Code Online (Sandbox Code Playgroud)

然后打电话GroupBy.cumcount:

b = a.groupby(a).cumcount() + 1
print (b)
0    1
1    1
2    1
3    2
4    3
5    4
6    5
7    6
8    7
9    8
dtype: int64
Run Code Online (Sandbox Code Playgroud)

如果想对所有列应用解决方案可以使用apply:

print (df.apply(lambda x: x.groupby((x != x.shift()).cumsum()).cumcount() + 1))
   0  1  2  3  4  5  6  7  8  9
0  1  1  1  1  1  1  1  1  1  1
1  1  1  1  2  1  2  2  2  2  2
2  1  2  2  3  1  3  3  3  3  3
3  2  1  3  4  1  4  4  4  4  4
4  3  2  1  1  1  1  1  1  5  5
5  4  1  2  2  2  1  1  1  6  6
6  5  2  1  1  3  1  1  1  1  7
7  6  3  1  1  1  2  2  2  2  1
8  7  1  2  1  1  3  1  1  1  1
9  8  2  3  2  2  4  1  1  2  2
Run Code Online (Sandbox Code Playgroud)

但它很慢,因为大数据.有可能创建一些快速的numpy解决方案吗?

我发现只适用于1d阵列的解决方案.

Div*_*kar 8

大概的概念

考虑我们执行此累积计数的一般情况,或者如果您将它们视为范围,我们可以将它们称为 - 分组范围.

现在,这个想法很简单 - 比较沿着相应轴的一次性切片以寻找不等式.True在每行/列的开头填充(取决于计数轴).

然后,它变得复杂 - 设置一个ID数组,意图是我们将最终的cumsum,它将是其扁平化顺序的期望输出.因此,设置从初始化1s与输入数组具有相同形状的数组开始.在每个组开始输入时,使用先前的组长度偏移ID数组.关注我们如何为每一行做代码(应该提供更多见解) -

def grp_range_2drow(a, start=0):
    # Get grouped ranges along each row with resetting at places where
    # consecutive elements differ

    # Input(s) : a is 2D input array

    # Store shape info
    m,n = a.shape

    # Compare one-off slices for each row and pad with True's at starts
    # Those True's indicate start of each group
    p = np.ones((m,1),dtype=bool)
    a1 = np.concatenate((p, a[:,:-1] != a[:,1:]),axis=1)

    # Get indices of group starts in flattened version
    d = np.flatnonzero(a1)

    # Setup ID array to be cumsumed finally for desired o/p 
    # Assign into starts with previous group lengths. 
    # Thus, when cumsumed on flattened version would give us flattened desired
    # output. Finally reshape back to 2D  
    c = np.ones(m*n,dtype=int)
    c[d[1:]] = d[:-1]-d[1:]+1
    c[0] = start
    return c.cumsum().reshape(m,n)
Run Code Online (Sandbox Code Playgroud)

我们将扩展它以解决行和列的一般情况.对于列情况,我们只需转置,提供给早期的行解决方案,最后转置回来,就像这样 -

def grp_range_2d(a, start=0, axis=1):
    # Get grouped ranges along specified axis with resetting at places where
    # consecutive elements differ

    # Input(s) : a is 2D input array

    if axis not in [0,1]:
        raise Exception("Invalid axis")

    if axis==1:
        return grp_range_2drow(a, start=start)
    else:
        return grp_range_2drow(a.T, start=start).T
Run Code Online (Sandbox Code Playgroud)

样品运行

让我们考虑一个样本运行,因为它会在每列中找到分组范围,每个组以1- 开头-

In [330]: np.random.seed(0)

In [331]: a = np.random.randint(1,3,(10,10))

In [333]: a
Out[333]: 
array([[1, 2, 2, 1, 2, 2, 2, 2, 2, 2],
       [2, 1, 1, 2, 1, 1, 1, 1, 1, 2],
       [1, 2, 2, 1, 1, 2, 2, 2, 2, 1],
       [2, 1, 2, 1, 2, 2, 1, 2, 2, 1],
       [1, 2, 1, 2, 2, 2, 2, 2, 1, 2],
       [1, 2, 2, 2, 2, 1, 2, 1, 1, 2],
       [2, 1, 2, 1, 2, 1, 1, 1, 1, 1],
       [2, 2, 1, 1, 1, 2, 2, 1, 2, 1],
       [1, 2, 1, 2, 2, 2, 2, 2, 2, 1],
       [2, 2, 1, 1, 2, 1, 1, 2, 2, 1]])

In [334]: grp_range_2d(a, start=1, axis=0)
Out[334]: 
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 2],
       [1, 1, 1, 1, 2, 1, 1, 1, 1, 1],
       [1, 1, 2, 2, 1, 2, 1, 2, 2, 2],
       [1, 1, 1, 1, 2, 3, 1, 3, 1, 1],
       [2, 2, 1, 2, 3, 1, 2, 1, 2, 2],
       [1, 1, 2, 1, 4, 2, 1, 2, 3, 1],
       [2, 1, 1, 2, 1, 1, 1, 3, 1, 2],
       [1, 2, 2, 1, 1, 2, 2, 1, 2, 3],
       [1, 3, 3, 1, 2, 1, 1, 2, 3, 4]])
Run Code Online (Sandbox Code Playgroud)

因此,为了解决数据帧输入和输出的问题,它将是 -

out = grp_range_2d(df.values, start=1,axis=0)
pd.DataFrame(out,columns=df.columns,index=df.index)
Run Code Online (Sandbox Code Playgroud)


B. *_* M. 6

和numba解决方案.对于这样棘手的问题,它总是胜出,这里是7x因子vs numpy,因为只有一次传递res.

from numba import njit 
@njit
def thefunc(arrc):
    m,n=arrc.shape
    res=np.empty((m+1,n),np.uint32)
    res[0]=1
    for i in range(1,m+1):
        for j in range(n):
            if arrc[i-1,j]:
                res[i,j]=res[i-1,j]+1
            else : res[i,j]=1
    return res 

def numbering(arr):return thefunc(arr[1:]==arr[:-1])
Run Code Online (Sandbox Code Playgroud)

我需要外化,arr[1:]==arr[:-1]因为numba不支持字符串.

In [75]: %timeit numbering(arr)
13.7 µs ± 373 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [76]: %timeit grp_range_2dcol(arr)
111 µs ± 18.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Run Code Online (Sandbox Code Playgroud)

对于更大的阵列(100 000行x 100 cols),差距不是很大:

In [168]: %timeit a=grp_range_2dcol(arr)
1.54 s ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [169]: %timeit a=numbering(arr)
625 ms ± 43.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)

如果arr可以转换为'S8',我们可以赢得很多时间:

In [398]: %timeit arr[1:]==arr[:-1]
584 ms ± 12.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [399]: %timeit arr.view(np.uint64)[1:]==arr.view(np.uint64)[:-1]
196 ms ± 18.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)