Sha*_*nda 1 python-3.x apache-spark pyspark pyspark-sql
我正在尝试从我的 spark 数据帧创建一个嵌套的 json,它具有以下结构的数据。下面的代码正在创建一个带有键和值的简单 json。能否请你帮忙
df.coalesce(1).write.format('json').save(data_output_file+"createjson.json", overwrite=True)
Run Code Online (Sandbox Code Playgroud)
更新 1:根据@MaxU 的回答,我将 spark 数据框转换为 pandas 并使用了 group by。它将最后两个字段放入嵌套数组中。我如何首先将类别和计数放在嵌套数组中,然后在该数组中放入子类别和计数。
示例文本数据:
Vendor_Name,count,Categories,Category_Count,Subcategory,Subcategory_Count
Vendor1,10,Category 1,4,Sub Category 1,1
Vendor1,10,Category 1,4,Sub Category 2,2
Vendor1,10,Category 1,4,Sub Category 3,3
Vendor1,10,Category 1,4,Sub Category 4,4
j = (data_pd.groupby(['vendor_name','vendor_Cnt','Category','Category_cnt'], as_index=False)
.apply(lambda x: x[['Subcategory','subcategory_cnt']].to_dict('r'))
.reset_index()
.rename(columns={0:'subcategories'})
.to_json(orient='records'))
Run Code Online (Sandbox Code Playgroud)
[{
"vendor_name": "Vendor 1",
"count": 10,
"categories": [{
"name": "Category 1",
"count": 4,
"subCategories": [{
"name": "Sub Category 1",
"count": 1
},
{
"name": "Sub Category 2",
"count": 1
},
{
"name": "Sub Category 3",
"count": 1
},
{
"name": "Sub Category 4",
"count": 1
}
]
}]
Run Code Online (Sandbox Code Playgroud)
您需要为此重新构建整个数据框。
“subCategories”是一个结构类型。
from pyspark.sql import functions as F
df.withColumn(
"subCategories",
F.struct(
F.col("subCategories").alias("name"),
F.col("subcategory_count").alias("count")
)
)
Run Code Online (Sandbox Code Playgroud)
然后, groupBy 并使用 F.collect_list 创建数组。
最后,您的数据框中只需要 1 条记录即可获得您期望的结果。
| 归档时间: |
|
| 查看次数: |
3473 次 |
| 最近记录: |