如何使用 JohnSnowLabs NLP 拼写校正模块 NorvigSweetingModel?

use*_*499 3 nlp scala apache-spark apache-spark-ml johnsnowlabs-spark-nlp

我在这里浏览了 JohnSnowLabs SpellChecker 。

我在那里找到了Norvig的算法实现,示例部分只有以下两行:

import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
NorvigSweetingModel.pretrained()
Run Code Online (Sandbox Code Playgroud)

如何在df下面的数据框 ( )上应用此预训练模型以纠正“ names”列的拼写?

+----------------+---+------------+
|           names|age|       color|
+----------------+---+------------+
|      [abc, cde]| 19|    red, abc|
|[eefg, efa, efb]|192|efg, efz efz|
+----------------+---+------------+
Run Code Online (Sandbox Code Playgroud)

我试过这样做:

val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

val cdf = schk.transform(df)
Run Code Online (Sandbox Code Playgroud)

但是上面的代码给了我以下错误:

java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
  at scala.Predef$.require(Predef.scala:224)
  at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
  ... 49 elided
Run Code Online (Sandbox Code Playgroud)

104*_*ica 5

spark-nlp 被设计用于其自己的特定管道,不同转换器的输入列必须包含特殊的元数据。

异常已经告诉您NorvigSweetingModel应该对 的输入进行标记化:

确保此类列具有以下注释器类型:token

如果我没记错的话,至少您将在这里组装文档并标记化。

import com.johnsnowlabs.nlp.DocumentAssembler
import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
import com.johnsnowlabs.nlp.annotators.Tokenizer
import org.apache.spark.ml.Pipeline

val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

val nlpPipeline = new Pipeline().setStages(Array(
  new DocumentAssembler().setInputCol("names").setOutputCol("document"),
  new Tokenizer().setInputCols("document").setOutputCol("tokens"),
  NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
))
Run Code Online (Sandbox Code Playgroud)

一个Pipeline这样的,可以与小的调整你的数据应用-输入数据必须是string不是array<string>*:

val result = df
  .transform(_.withColumn("names", concat_ws(" ", $"names")))
  .transform(df => nlpPipeline.fit(df).transform(df))
result.show()
Run Code Online (Sandbox Code Playgroud)
+------------+--------------------+--------------------+--------------------+
|       names|            document|              tokens|           corrected|
+------------+--------------------+--------------------+--------------------+
|     abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
|eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
+------------+--------------------+--------------------+--------------------+
Run Code Online (Sandbox Code Playgroud)

如果你想要一个可以导出的输出,你应该扩展你PipelineFinisher.

import com.johnsnowlabs.nlp.Finisher

new Finisher().setInputCols("corrected").transform(result).show
Run Code Online (Sandbox Code Playgroud)
 +------------+------------------+
 |       names|finished_corrected|
 +------------+------------------+
 |     abc cde|        [abc, cde]|
 |eefg efa efb|  [eefg, efa, efb]|
 +------------+------------------+
Run Code Online (Sandbox Code Playgroud)

* 根据文档 DocumentAssembler

可以读取 String 列或 Array[String]

但它看起来不像在 1.7.3 中的实际工作:

df.transform(df => nlpPipeline.fit(df).transform(df)).show()
Run Code Online (Sandbox Code Playgroud)
org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
'Project [names#62, UDF(names#62) AS document#343]
+- AnalysisBarrier
      +- Project [value#60 AS names#62]
         +- LocalRelation [value#60]
Run Code Online (Sandbox Code Playgroud)