WIT*_*WIT 6 python google-bigquery google-cloud-platform google-cloud-dataflow apache-beam
在堆栈溢出之前我已经看过这个问题的答案(/sf/ask/2098853501/),但不是因为apache beam为python添加了可拆分的dofn功能.在将文件模式传递给gcs存储桶时,如何访问当前正在处理的文件的文件名?
我想将文件名传递给我的转换函数:
with beam.Pipeline(options=pipeline_options) as p:
lines = p | ReadFromText('gs://url to file')
data = (
lines
| 'Jsonify' >> beam.Map(jsonify)
| 'Unnest' >> beam.FlatMap(unnest)
| 'Write to BQ' >> beam.io.Write(beam.io.BigQuerySink(
'project_id:dataset_id.table_name', schema=schema,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)
)
Run Code Online (Sandbox Code Playgroud)
最后,我想要做的是在转换json的每一行时将文件名传递给我的转换函数(请参阅此内容,然后使用文件名在不同的BQ表中进行查找以获取值).我想一旦我设法知道如何获取文件名,我将能够找出侧输入部分,以便在bq表中进行查找并获得唯一值.
Gui*_*ins 10
我试图用之前引用的案例实现一个解决方案。在那里,以及在其他方法中,例如这种方法,它们还获取文件名列表,但将所有文件加载到单个元素中,该元素可能无法很好地扩展大文件。因此,我考虑将文件名添加到每条记录中。
作为输入,我使用了两个 csv 文件:
$ gsutil cat gs://$BUCKET/countries1.csv
id,country
1,sweden
2,spain
gsutil cat gs://$BUCKET/countries2.csv
id,country
3,italy
4,france
Run Code Online (Sandbox Code Playgroud)
使用GCSFileSystem.match
我们可以访问metadata_list
检索包含文件路径和大小(以字节为单位)的 FileMetadata。在我的例子中:
[FileMetadata(gs://BUCKET_NAME/countries1.csv, 29),
FileMetadata(gs://BUCKET_NAME/countries2.csv, 29)]
Run Code Online (Sandbox Code Playgroud)
代码是:
result = [m.metadata_list for m in gcs.match(['gs://{}/countries*'.format(BUCKET)])]
Run Code Online (Sandbox Code Playgroud)
我们会将每个匹配的文件读入不同的 PCollection。由于我们不知道先验的文件数量,我们需要以编程方式为每个 PCollection 创建一个名称列表,(p0, p1, ..., pN-1)
并确保我们为每个步骤都有唯一的标签('Read file 0', 'Read file 1', etc.)
:
variables = ['p{}'.format(i) for i in range(len(result))]
read_labels = ['Read file {}'.format(i) for i in range(len(result))]
add_filename_labels = ['Add filename {}'.format(i) for i in range(len(result))]
Run Code Online (Sandbox Code Playgroud)
然后我们继续将每个不同的文件读入其对应的 PCollection 中ReadFromText
,然后我们调用AddFilenamesFn
ParDo 将每个记录与文件名相关联。
for i in range(len(result)):
globals()[variables[i]] = p | read_labels[i] >> ReadFromText(result[i].path) | add_filename_labels[i] >> beam.ParDo(AddFilenamesFn(), result[i].path)
Run Code Online (Sandbox Code Playgroud)
在哪里AddFilenamesFn
:
class AddFilenamesFn(beam.DoFn):
"""ParDo to output a dict with filename and row"""
def process(self, element, file_path):
file_name = file_path.split("/")[-1]
yield {'filename':file_name, 'row':element}
Run Code Online (Sandbox Code Playgroud)
我的第一种方法是直接使用 Map 函数,这会产生更简单的代码。但是,result[i].path
在循环结束时被解析,并且每条记录都被错误地映射到列表的最后一个文件:
globals()[variables[i]] = p | read_labels[i] >> ReadFromText(result[i].path) | add_filename_labels[i] >> beam.Map(lambda elem: (result[i].path, elem))
Run Code Online (Sandbox Code Playgroud)
最后,我们将所有 PCollections 合并为一个:
merged = [globals()[variables[i]] for i in range(len(result))] | 'Flatten PCollections' >> beam.Flatten()
Run Code Online (Sandbox Code Playgroud)
我们通过记录元素来检查结果:
INFO:root:{'filename': u'countries2.csv', 'row': u'id,country'}
INFO:root:{'filename': u'countries2.csv', 'row': u'3,italy'}
INFO:root:{'filename': u'countries2.csv', 'row': u'4,france'}
INFO:root:{'filename': u'countries1.csv', 'row': u'id,country'}
INFO:root:{'filename': u'countries1.csv', 'row': u'1,sweden'}
INFO:root:{'filename': u'countries1.csv', 'row': u'2,spain'}
Run Code Online (Sandbox Code Playgroud)
我在 Python SDK 2.8.0DirectRunner
和DataflowRunner
Python SDK 2.8.0 上对此进行了测试。
我希望这解决了这里的主要问题,您现在可以继续将 BigQuery 集成到您的完整用例中。您可能需要为此使用 Python 客户端库,我写了一个类似的 Java示例。
完整代码:
import argparse, logging
from operator import add
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io import ReadFromText
from apache_beam.io.filesystem import FileMetadata
from apache_beam.io.filesystem import FileSystem
from apache_beam.io.gcp.gcsfilesystem import GCSFileSystem
class GCSFileReader:
"""Helper class to read gcs files"""
def __init__(self, gcs):
self.gcs = gcs
class AddFilenamesFn(beam.DoFn):
"""ParDo to output a dict with filename and row"""
def process(self, element, file_path):
file_name = file_path.split("/")[-1]
# yield (file_name, element) # use this to return a tuple instead
yield {'filename':file_name, 'row':element}
# just logging output to visualize results
def write_res(element):
logging.info(element)
return element
def run(argv=None):
parser = argparse.ArgumentParser()
known_args, pipeline_args = parser.parse_known_args(argv)
p = beam.Pipeline(options=PipelineOptions(pipeline_args))
gcs = GCSFileSystem(PipelineOptions(pipeline_args))
gcs_reader = GCSFileReader(gcs)
# in my case I am looking for files that start with 'countries'
BUCKET='BUCKET_NAME'
result = [m.metadata_list for m in gcs.match(['gs://{}/countries*'.format(BUCKET)])]
result = reduce(add, result)
# create each input PCollection name and unique step labels
variables = ['p{}'.format(i) for i in range(len(result))]
read_labels = ['Read file {}'.format(i) for i in range(len(result))]
add_filename_labels = ['Add filename {}'.format(i) for i in range(len(result))]
# load each input file into a separate PCollection and add filename to each row
for i in range(len(result)):
# globals()[variables[i]] = p | read_labels[i] >> ReadFromText(result[i].path) | add_filename_labels[i] >> beam.Map(lambda elem: (result[i].path, elem))
globals()[variables[i]] = p | read_labels[i] >> ReadFromText(result[i].path) | add_filename_labels[i] >> beam.ParDo(AddFilenamesFn(), result[i].path)
# flatten all PCollections into a single one
merged = [globals()[variables[i]] for i in range(len(result))] | 'Flatten PCollections' >> beam.Flatten() | 'Write results' >> beam.Map(write_res)
p.run()
if __name__ == '__main__':
run()
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
1627 次 |
最近记录: |