Bay*_*Max 7 scala apache-spark
以下代码引发异常:java.lang.UnsupportedOperationException:未定义架构的行上的fieldIndex未定义.当在使用ExpressionEncoder,groupedByKey和flatMap的数据框上的groupByKey和flatMap调用之后返回的数据帧上调用时,会发生这种情况.
逻辑流程:originalDf-> groupByKey-> flatMap-> groupByKey-> flatMap-> show
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}
import scala.collection.mutable.ListBuffer
object Test {
def main(args: Array[String]): Unit = {
val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF
dataFrame.show()
dataFrame.printSchema()
val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)
val expr = RowEncoder.apply(newSchema)
val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)
tranform.show
val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1
}
for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)
tranform2.show
}
}
Run Code Online (Sandbox Code Playgroud)
以下是堆栈跟踪
18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Run Code Online (Sandbox Code Playgroud)
如何修复此代码?
可以通过替换getAs[T]fieldname
方法的版本(在 for 函数中使用)来避免报告的问题:groupByKey
groupByKey(row => row.getAs[String]("_1"))
Run Code Online (Sandbox Code Playgroud)
与field-position
版本:
groupByKey(row => row.getAs[String](fieldIndexMap("_1")))
Run Code Online (Sandbox Code Playgroud)
其中fieldIndexMap
将字段名称映射到相应的字段索引:
val fieldIndexMap = tranform.schema.fieldNames.zipWithIndex.toMap
Run Code Online (Sandbox Code Playgroud)
作为旁注,您的flatMapGroups函数可以简化为如下所示:
val tranform2 = tranform.groupByKey(_.getAs[String](fieldIndexMap("_1"))).
flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq
val length = inputSeq.size
inputSeq.map(r => Row.fromSeq(r.toSeq :+ length))
})(expr1)
Run Code Online (Sandbox Code Playgroud)
将原始groupByKey/flatMapGroups
方法应用于“dataFrame”与“transform”之间的不一致行为显然与这些方法如何处理 aDataFrame
与 a相关Dataset[Row]
。
归档时间: |
|
查看次数: |
1074 次 |
最近记录: |