jee*_*a_v 3 python machine-learning deep-learning keras tensorflow
重塑张量时我得到 None 类型。当使用损失函数和优化器编译模型时(开始训练之前)会发生这种情况。我该怎么办?
错误:
TypeError: Failed to convert object of type <class 'tuple'> to Tensor. Contents: (None, -1). Consider casting elements to a supported type.
Run Code Online (Sandbox Code Playgroud)
自定义损失函数:
def custom_loss(y_true, y_pred):
y_pred = K.reshape(y_pred, (K.get_variable_shape(y_pred)[0], -1))
y_true = K.reshape(y_true, (K.get_variable_shape(y_true)[0], -1))
y_pred = K.std(y_pred, axis=0)
y_true = K.std(y_true, axis=0)
loss = (1/2) * (y_pred - y_true) ** 2
loss = K.mean(loss)
return loss
Run Code Online (Sandbox Code Playgroud)
发生这种情况是因为您的y_true或y_pred张量的形状未正确定义。None这里意味着张量的形状没有严格设置,但它可以根据我们看不到的先前操作而变化。或者你只是像这样初始化了你的张量。
如何修复它:
y_true获取y_pred其形状并避免获得 None 形状,因此张量将具有确定的行数和列数例子:
您的损失函数适用于正确的输入:
import tensorflow as tf
from keras import backend as K
def custom_loss(y_true, y_pred):
y_pred = K.reshape(y_pred, (K.get_variable_shape(y_pred)[0], -1))
y_true = K.reshape(y_true, (K.get_variable_shape(y_true)[0], -1))
y_pred = K.std(y_pred, axis=0)
y_true = K.std(y_true, axis=0)
loss = (1 / 2) * (y_pred - y_true) ** 2
return loss
a = tf.constant([[1.0, 2., 3.]])
b = tf.constant([[1., 2., 3.]])
loss = custom_loss(a, b)
loss = tf.Print(loss, [loss], "loss")
with tf.Session() as sess:
_ = sess.run([loss])
Run Code Online (Sandbox Code Playgroud)
但是当使用我没有定义形状的占位符时,会抛出相同的异常
a = tf.placeholder(tf.float32, (None, 32))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2220 次 |
| 最近记录: |