Tru*_*ufa 15 java int overflow factorial
这样做时:
int x = 100;
int result = 1;
for (int i = 1; i < (x + 1); i++) {
result = (result * i);
}
System.out.println(result);
Run Code Online (Sandbox Code Playgroud)
这显然是因为结果对于整数来说太大了,但我习惯于为溢出得到大的负数,而不是0.
提前致谢!
当我切换到这个:
int x = 100;
int result = 1;
for (int i = 1; i < (x + 1); i++) {
result = (result * i);
System.out.println(result);
}
Run Code Online (Sandbox Code Playgroud)
我得到这个.
Pet*_*rey 23
有50个偶数,介于1和100之间.这意味着阶乘是2的倍数至少50倍,换句话说,作为二进制数,最后50位将是0.(实际上,更多的是偶数第二偶数是2*2的倍数等)
public static void main(String... args) {
BigInteger fact = fact(100);
System.out.println("fact(100) = " + fact);
System.out.println("fact(100).longValue() = " + fact.longValue());
System.out.println("fact(100).intValue() = " + fact.intValue());
int powerOfTwoCount = 0;
BigInteger two = BigInteger.valueOf(2);
while (fact.compareTo(BigInteger.ZERO) > 0 && fact.mod(two).equals(BigInteger.ZERO)) {
powerOfTwoCount++;
fact = fact.divide(two);
}
System.out.println("fact(100) powers of two = " + powerOfTwoCount);
}
private static BigInteger fact(long n) {
BigInteger result = BigInteger.ONE;
for (long i = 2; i <= n; i++)
result = result.multiply(BigInteger.valueOf(i));
return result;
}
Run Code Online (Sandbox Code Playgroud)
版画
fact(100) = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
fact(100).longValue() = 0
fact(100).intValue() = 0
fact(100) powers of two = 97
Run Code Online (Sandbox Code Playgroud)
这意味着对于事实的最低位(100),97位整数将为0
实际上,对于事实(n),2的幂的数量非常接近n.事实上(10000)有9995的两个权力.这是因为它大约是1/2次幂的总和,总和接近n
.即,每第二个数字甚至是n/2,并且每第4个数字具有2(+ n/4)的附加功率,并且每8个具有附加功率(+ n/8)等接近n
作为总和.
为了了解原因,我们可以观察到因子的素因子化.
fac( 1) = 1 = 2^0
fac( 2) = 2 = 2^1
fac( 3) = 2 * 3 = 2^1 * 3
fac( 4) = 2 * 2 * 2 * 3 = 2^3 * 3
fac( 5) = ... = 2^3 * 3 * 5
fac( 6) = ... = 2^4 * 3^2 * 5
fac( 7) = ... = 2^4 * ...
fac( 8) = ... = 2^7 * ...
fac( 9) = ... = 2^7 * ...
fac(10) = ... = 2^8 * ...
fac(11) = ... = 2^8 * ...
...
fac(29) = ... = 2^25 * ...
fac(30) = ... = 2^26 * ...
fac(31) = ... = 2^26 * ...
fac(32) = ... = 2^31 * ...
fac(33) = ... = 2^31 * ...
fac(34) = ... = 2^32 * ... <===
fac(35) = ... = 2^32 * ...
fac(36) = ... = 2^34 * ...
...
fac(95) = ... = 2^88 * ...
fac(96) = ... = 2^93 * ...
fac(97) = ... = 2^93 * ...
fac(98) = ... = 2^94 * ...
fac(99) = ... = 2^94 * ...
fac(100)= ... = 2^96 * ...
Run Code Online (Sandbox Code Playgroud)
该指数2
是base-2视图中的尾随零的数量,因为所有其他因子都是奇数,因此1
在产品的最后一个二进制数字中贡献一个.
类似的方案也适用于其他素数,因此我们可以轻松地计算分解fac(100)
:
fac(100) = 2^96 * 3^48 * 5^24 * 7^16 * 11^9 * 13^7 * 17^5 * 19^5 * 23^4 *
29^3 * 31^2 * 37^2 * 41^2 * 43^2 * 47^2 *
53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97
Run Code Online (Sandbox Code Playgroud)
因此,如果我们的计算机将数字存储在基数3中,并且具有48个特里数,则为fac(100)
0(fac(99)
也是,但fac(98)
不会:-)
不错的问题 - 答案是:33因子(由于负值)-2147483648
是0x80000000
,或者0xFFFFFFFF80000000
如果采用64位.乘以34(下一个成员)将给出一个long值0xFFFFFFE600000000
,当转换为int时会给你0x00000000
.
显然从那时起你将保持0.
归档时间: |
|
查看次数: |
24722 次 |
最近记录: |