考虑以下:
library(tidyverse)
df <- tibble(x = rnorm(100), y = rnorm(100, 10, 2), z = x * y)
df %>%
mutate_all(funs(avg = mean(.), dev = sd(.), scaled = (. - mean(.)) / sd(.)))
Run Code Online (Sandbox Code Playgroud)
有没有办法通过引用和列来避免调用mean和sd两次.我想到的是类似的东西avgdev
df %>%
mutate_all(funs(avg = mean(.), dev = sd(.), scaled = (. - avg) / dev))
Run Code Online (Sandbox Code Playgroud)
显然,这是行不通的,因为没有列avg和dev,但是x_avg,x_dev,y_avg,y_dev,等.
有一个好办法,内部funs使用rlang的工具以编程方式创建这些列引用,这样我可以参考由以前命名的参数创建的列funs(当.是x,我将引用x_mean和x_dev计算x_scaled,等等)?
我认为如果将数据转换为长格式会更容易
library(tidyverse)
set.seed(111)
df <- tibble(x = rnorm(100), y = rnorm(100, 10, 2), z = x * y)
df %>%
gather(key, value) %>%
group_by(key) %>%
mutate(avg = mean(value),
sd = sd(value),
scaled = (value - avg) / sd)
#> # A tibble: 300 x 5
#> # Groups: key [3]
#> key value avg sd scaled
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 x 0.235 -0.0128 1.07 0.232
#> 2 x -0.331 -0.0128 1.07 -0.297
#> 3 x -0.312 -0.0128 1.07 -0.279
#> 4 x -2.30 -0.0128 1.07 -2.14
#> 5 x -0.171 -0.0128 1.07 -0.148
#> 6 x 0.140 -0.0128 1.07 0.143
#> 7 x -1.50 -0.0128 1.07 -1.39
#> 8 x -1.01 -0.0128 1.07 -0.931
#> 9 x -0.948 -0.0128 1.07 -0.874
#> 10 x -0.494 -0.0128 1.07 -0.449
#> # ... with 290 more rows
Run Code Online (Sandbox Code Playgroud)
由reprex包创建于2018-11-04 (v0.2.1.9000)
这看起来有点复杂,但它有效:
scaled <- function(col_name, x, y) {
col_name <- deparse(substitute(col_name))
avg <- eval.parent(as.symbol(paste0(col_name, x)))
dev <- eval.parent(as.symbol(paste0(col_name, y)))
(eval.parent(as.symbol(col_name)) - avg) / dev
}
df %>%
mutate_all(funs(avg = mean(.), dev = sd(.), scaled = scaled(., "_avg", "_dev")))
Run Code Online (Sandbox Code Playgroud)