LSTM - 一段时间后预测相同的常数值

Tob*_*Sta 6 python lstm keras tensorflow

我有一个变量,我想预测到未来 30 年。不幸的是,我没有很多样品。

df = pd.DataFrame({'FISCAL_YEAR': [1979,1980,1981,1982,1983,  1984,  
1985,  1986,  1987,  1988,  1989,  1990,  1991,  1992,  1993,  1994,  
1995,  1996,
  1997,  1998,  1999,  2000,  2001,  2002,  2003,  2004,  2005,  2006,  
2007,  2008,  2009,  2010,  2011,  2012,  2013,  2014,  2015,  2016,  
2017,  2018,  2019],
 'VALS': [1341.9,  1966.95,  2085.75,  2087.1000000000004,  2760.75,  
3461.4,  3156.3,  3061.8,  2309.8500000000004,  2320.65,  2535.3,  
2964.6000000000004,  2949.75,  2339.55,
  2327.4,  2571.75,  2299.05,  1560.6000000000001,  1370.25,  1301.4,  
1215.0,  5691.6,  6281.55,  6529.950000000001,  17666.100000000002,  
14467.95,  15205.050000000001,  14717.7,  14426.1,  12946.5,
  13000.5,  12761.550000000001,  13076.1,  13444.650000000001,  
13444.650000000001,  13321.800000000001,  13536.45,  13331.25,  
12630.6,  12741.300000000001,  12658.95]})
Run Code Online (Sandbox Code Playgroud)

这是我的代码:

def build_model(n_neurons,dropout,s):
    lstm = Sequential()
    if cudnn:
        lstm.add(CuDNNLSTM(n_neurons))
        n_epochs = 200
    else:
        lstm.add(Masking(mask_value=-1,input_shape=(s[1],s[2])))
        lstm.add(LSTM(n_neurons,dropout=dropout))
        n_epochs = 500

    lstm.add(Dense(1))
    #lstm.add(Activation('softmax'))
    lstm.compile(loss='mean_squared_error',optimizer='adam')
    return lstm

def create_df(dfin,fwd,lstmws):
    ''' Input Normalization '''
    idx = dfin.FISCAL_YEAR.values[fwd:]
    dfx = dfin[[varn]].copy()
    dfy = dfin[[varn]].copy()

    # LSTM window - use last lstmws values
    for i in range(0,lstmws-1):
        dfx = dfx.join(dfin[[varn]].shift(-i-1),how='left',rsuffix='{:02d}'.format(i+1))

    dfx = (dfx-vmnx).divide(vmxx-vmnx)
    dfx.fillna(-1,inplace=True) # replace missing values with -1

    dfy = (dfy-vmnx).divide(vmxx-vmnx)
    dfy.fillna(-1,inplace=True) # replace missing values with -1
    return dfx,dfy,idx

def forecast(dfin,dfx,lstm,idx,gapyr=1):
    ''' Model Forecast '''
    xhat = dfx.values
    xhat = xhat.reshape(xhat.shape[0],lstmws,int(xhat.shape[1]/lstmws))
    yhat = lstm.predict(xhat)

    yhat = yhat*(vmxx-vmnx)+vmnx
    dfout = pd.DataFrame(list(zip(idx+gapyr,yhat.reshape(1,-1)[0])),columns=['FISCAL_YEAR',varn])
    dfout = pd.concat([dfin.head(1),dfout],axis=0).reset_index(drop=True)
    #append last prediction to X and use for prediction
    dfin = pd.concat([dfin,dfout.tail(1)],axis=0).reset_index(drop=True)
    return dfin

def lstm_training(dfin,lstmws,fwd,num_years,batchsize=4,cudnn=False,n_neurons=47,dropout=0.05,retrain=False):
    ''' LSTM Parameter '''
    seed(2018)
    set_random_seed(2018)
    gapyr = 1 # Forecast +1 Year

    dfx,dfy,idx = create_df(dfin,fwd,lstmws)

    X,y = dfx.iloc[fwd:-gapyr].values,dfy[fwd+gapyr:].values[:,0]
    X,y = X.reshape(X.shape[0],lstmws,int(X.shape[1]/lstmws)),y.reshape(len(y), 1)

    lstm = build_model(n_neurons,dropout,X.shape)
    ''' LSTM Training Start '''
    if batchsize == 1:
        history_i = 
lstm.fit(X,y,epochs=25,batch_size=batchsize,verbose=0,shuffle=False)
    else:
        history_i = lstm.fit(X,y,epochs=n_epochs,batch_size=batchsize,verbose=0,shuffle=False)

    dfin = forecast(dfin,dfx,lstm,idx)


    lstm.reset_states()
    if not retrain:
        for fwd in range(1,num_years):

            dfx,dfy,idx = create_df(dfin,fwd,lstmws)

            dfin = forecast(dfin,dfx,lstm,idx)

            lstm.reset_states()

    del dfy,X,y,lstm
    gc.collect();
clear_session();
return dfin,history_i

varn = "VALS"
#LSTM-window
lstmws = 10
vmnx,vmxx = df[varn].astype(float).min(),df[varn].astype(float).max()
dfin,history_i = lstm_training(dfin,lstmws,0,2051-2018)
Run Code Online (Sandbox Code Playgroud)

在我的第一个版本中,我每次都在追加新预测后重新训练模型,并且预测从未收敛。但是因为每次新观察后训练都非常耗时,所以我不得不改变。

我的结果:

dfin.VALS.values
array([  1341.9       ,   1966.95      ,   2085.75      ,   2087.1       ,
     2760.75      ,   3461.4       ,   3156.3       ,   3061.8       ,
     2309.85      ,   2320.65      ,   2535.3       ,   2964.6       ,
     2949.75      ,   2339.55      ,   2327.4       ,   2571.75      ,
     2299.05      ,   1560.6       ,   1370.25      ,   1301.4       ,
     1215.        ,   5691.6       ,   6281.55      ,   6529.95      ,
    17666.1       ,  14467.95      ,  15205.05      ,  14717.7       ,
    14426.1       ,  12946.5       ,  13000.5       ,  12761.55      ,
    13076.1       ,  13444.65      ,  13444.65      ,  13321.8       ,
    13536.45      ,  13331.25      ,  12630.6       ,  12741.3       ,
    12658.95      ,  10345.97167969,  12192.12792969,  13074.4296875 ,
    13264.40917969,  12956.1796875 ,  12354.1953125 ,  11659.03125   ,
    11044.06933594,  10643.19921875,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094,  10552.52246094,  10552.52246094,
    10552.52246094,  10552.52246094])
Run Code Online (Sandbox Code Playgroud)

我怎样才能避免在过去 20 多年里得到相同的预测?

编辑:

我预先添加了更多的随机数据,看看是不是因为样本量小,但一段时间后预测再次保持不变。

df0 = pd.DataFrame([range(1900,1979),list(np.random.rand(1979-1900)*(vmxx-vmnx)+vmnx)],index=["FISCAL_YEAR","VALS"]).T
df = pd.concat([df0,df])
df["FISCAL_YEAR"] = df["FISCAL_YEAR"].astype(int)
df.index = range(1900,2020)
Run Code Online (Sandbox Code Playgroud)

我观察到的一个奇怪的事情是预测在 10 年后相同,即窗口大小,但如果我将 lstmws 增加到 20,预测在 20 年后收敛:

lstmws = 20
Run Code Online (Sandbox Code Playgroud)

结果:

{'FISCAL_YEAR': [2020,  2021,  2022,  2023,  2024,  2025,  2026,  027,  028,  2029,  2030,  2031,  2032,  2033,  2034,  2035,  2036,  2037,  2038,  039,  2040,  2041,  2042,  2043,  2044,  2045,  2046,  2047,  2048,  2049,  050,  2051,  2052],
 'VALS': [11183.32421875,  12388.28125,  13151.013671875,  12543.6796875,  2590.0888671875,  12002.583984375,  11822.8857421875,  11479.6572265625,  1423.1279296875,  11444.5751953125,  11506.60546875,  11563.3173828125,  1595.0029296875,  11599.8955078125,  11586.8037109375,  11571.337890625,  1574.541015625,  11620.7900390625,  11734.2431640625,  11934.216796875,  1934.216796875,  11934.216796875,  11934.216796875,  11934.216796875,  1934.216796875,  11934.216796875,  11934.216796875,  11934.216796875,  1934.216796875,  11934.216796875,  11934.216796875,  11934.216796875,  1934.216796875]}
Run Code Online (Sandbox Code Playgroud)

duh*_*ime 5

在我与LSTM的(我已经生成像舞步体验这个),我发现特别的帮助两件事防止模型停滞和预测相同的输出。

添加混合密度层

首先,使用混合密度网络而不是 L2 损失(如您所见)会很有帮助。阅读 Christopher Bishop关于 MDN 层论文以了解详细信息,但基本上 L2 损失试图将某些输入误差项的条件平均值预测为 y。如果对于一个值 x,您有多个可能的输出 y0、y1、y2,每个都有一定的概率(就像许多复杂系统一样),您需要考虑 MDN 层和负对数似然损失。是我正在使用的 Keras 实现。

现在更仔细地阅读您的情况,这可能对您的情况没有帮助,因为您似乎在预测一个时间序列,根据定义,每个 x 映射到单个 y。

为 LSTM 提供更长的序列

接下来,我发现n在我试图预测的值之前提供我的 LSTM序列值很有帮助。n 越大,我发现的结果越好(尽管训练速度较慢)。我读过的许多论文使用 1024 个先验序列值来预测下一个序列值。

您没有多少观察结果,但您可以尝试输入前 8 个观察结果以预测下一个观察结果。

确保输出数据与训练数据具有相同的结构

最后,几年后我终于来到这里,因为我正在训练一个具有分类交叉熵损失和一个热向量作为输入的模型。当我使用训练有素的模型生成序列时,我使用了:

# this predicts the same value over and over
predict_length = 100
sequence = X[0]
for i in range(predict_length):
  # note that z is a dense vector -- it needs to be converted to one hot!
  z = model.predict( np.expand_dims( sequence[-sequence_length:], 0 ) )
  sequence = np.vstack([sequence, z])
Run Code Online (Sandbox Code Playgroud)

我应该将我的输出预测转换为一个热向量:

# this predicts new values :)
predict_length = 1000
sequence = X[0]
for i in range(predict_length):
  # z is still a dense vector; we'll convert it to one-hot below
  z = model.predict( np.expand_dims( sequence[-sequence_length:], 0 ) ).squeeze()
  # let's convert z to a one hot vector to match the training data
  prediction = np.zeros(len(types),)
  prediction[ np.argmax(z) ] = 1
  sequence = np.vstack([sequence, prediction])
Run Code Online (Sandbox Code Playgroud)

我怀疑这最后一步是大多数人最终会选择此线程的原因!


Ric*_*dBJ 1

我可以看到你的预测步骤只使用默认的批量大小?尝试将批量大小设置为您用于训练步骤的批量大小。看看是否有帮助。

yhat = lstm.predict(xhat, batch_size=batchsize)
Run Code Online (Sandbox Code Playgroud)