New*_*ton 4 conv-neural-network keras
Keras 在训练集和测试集文件夹中发现错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮助我吗?
这里是代码:
cnn = Sequential()
cnn.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(32, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(64, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(128, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
#Full connection
cnn.add(Dense(units = 64, activation = 'relu'))
cnn.add(Dense(units = 64, activation = 'relu'))
cnn.add(Dense(units = 3, activation = 'softmax'))
# Compiling the CNN
cnn.compile(optimizer = OPTIMIZER, loss = 'categorical_crossentropy', metrics = ['accuracy'])
#Fitting
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
Run Code Online (Sandbox Code Playgroud)
和错误:
Found 12000 images belonging to 4 classes.
Found 3000 images belonging to 4 classes.
Epoch 1/10
---------------------------------------------------------------------------
ValueError: Error when checking target: expected dense_15 to have 4 dimensions, but got array with shape (3, 4)
Run Code Online (Sandbox Code Playgroud)
编辑:
只有 Google Cloud 中的 Jupyter Notebook 才会出现这种情况。当我在本地使用 Spyder 时,它会找到正确的类数。
您现在可能已经自己发现,Jupyter 创建隐藏的检查点文件夹用于备份目的。这就是为什么在使用 flow_from_directory 时总是有一个额外的类(如文件夹中)的原因。最简单的解决方案是删除该隐藏文件夹。
| 归档时间: |
|
| 查看次数: |
3006 次 |
| 最近记录: |