我有一个非常大的图像文件夹,以及一个包含每个图像的类标签的 CSV 文件。因为它们都在一个巨大的文件夹中,所以我想将它们分成训练/测试/验证集;也许创建三个新文件夹并将图像移动到基于某种 Python 脚本的每个文件夹中。我想做分层抽样,以便我可以在所有三个集合中保持类的百分比相同。
制作可以执行此操作的脚本的方法是什么?
AVI*_*AIN 13
使用 python 库拆分文件夹。
pip install split-folders
Run Code Online (Sandbox Code Playgroud)
让所有图像存储在Data文件夹中。然后申请如下:
import split_folders
split_folders.ratio('Data', output="output", seed=1337, ratio=(.8, 0.1,0.1))
Run Code Online (Sandbox Code Playgroud)
在运行上面的代码片段时,它将在output目录中创建 3 个文件夹:
使用ratio参数中的值可以改变每个文件夹中的图像数量(train:val:test)。
小智 8
我自己也遇到了类似的问题。我所有的图像都存储在两个文件夹中。“项目/Data2/DPN+”和“项目/Data2/DPN-”。这是一个二元分类问题。这两个类是“DPN+”和“DPN-”。这两个类文件夹中都有 .png 。我的目标是将数据集分发到培训、验证和测试文件夹中。这些新文件夹中的每一个都将有另外 2 个文件夹——“DPN+”和“DPN-”——在它们里面指示类。对于分区,我使用了 70:15:15 分配。我是python的初学者,所以如果我犯了任何错误,请告诉我。
以下是我的代码:
import os
import numpy as np
import shutil
# # Creating Train / Val / Test folders (One time use)
root_dir = 'Data2'
posCls = '/DPN+'
negCls = '/DPN-'
os.makedirs(root_dir +'/train' + posCls)
os.makedirs(root_dir +'/train' + negCls)
os.makedirs(root_dir +'/val' + posCls)
os.makedirs(root_dir +'/val' + negCls)
os.makedirs(root_dir +'/test' + posCls)
os.makedirs(root_dir +'/test' + negCls)
# Creating partitions of the data after shuffeling
currentCls = posCls
src = "Data2"+currentCls # Folder to copy images from
allFileNames = os.listdir(src)
np.random.shuffle(allFileNames)
train_FileNames, val_FileNames, test_FileNames = np.split(np.array(allFileNames),
[int(len(allFileNames)*0.7), int(len(allFileNames)*0.85)])
train_FileNames = [src+'/'+ name for name in train_FileNames.tolist()]
val_FileNames = [src+'/' + name for name in val_FileNames.tolist()]
test_FileNames = [src+'/' + name for name in test_FileNames.tolist()]
print('Total images: ', len(allFileNames))
print('Training: ', len(train_FileNames))
print('Validation: ', len(val_FileNames))
print('Testing: ', len(test_FileNames))
# Copy-pasting images
for name in train_FileNames:
shutil.copy(name, "Data2/train"+currentCls)
for name in val_FileNames:
shutil.copy(name, "Data2/val"+currentCls)
for name in test_FileNames:
shutil.copy(name, "Data2/test"+currentCls)
Run Code Online (Sandbox Code Playgroud)
小智 7
采纳史蒂文·怀特(Steven White)上面的答案并对其进行一些修改,因为分裂存在一个小问题。此外,这些文件分别保存在主文件夹中,而不是 train/test/val 文件夹中。
import os
import numpy as np
import shutil
import pandas as pd
def train_test_split():
print("########### Train Test Val Script started ###########")
#data_csv = pd.read_csv("DataSet_Final.csv") ##Use if you have classes saved in any .csv file
root_dir = 'New_folder_to_be_created'
classes_dir = ['class 1', 'class 2', 'class 3', 'class 4']
#for name in data_csv['names'].unique()[:10]:
# classes_dir.append(name)
processed_dir = 'Existing_folder_to_take_images_from'
val_ratio = 0.20
test_ratio = 0.20
for cls in classes_dir:
# Creating partitions of the data after shuffeling
print("$$$$$$$ Class Name " + cls + " $$$$$$$")
src = processed_dir +"//" + cls # Folder to copy images from
allFileNames = os.listdir(src)
np.random.shuffle(allFileNames)
train_FileNames, val_FileNames, test_FileNames = np.split(np.array(allFileNames),
[int(len(allFileNames) * (1 - (val_ratio + test_ratio))),
int(len(allFileNames) * (1 - val_ratio)),
])
train_FileNames = [src + '//' + name for name in train_FileNames.tolist()]
val_FileNames = [src + '//' + name for name in val_FileNames.tolist()]
test_FileNames = [src + '//' + name for name in test_FileNames.tolist()]
print('Total images: '+ str(len(allFileNames)))
print('Training: '+ str(len(train_FileNames)))
print('Validation: '+ str(len(val_FileNames)))
print('Testing: '+ str(len(test_FileNames)))
# # Creating Train / Val / Test folders (One time use)
os.makedirs(root_dir + '/train//' + cls)
os.makedirs(root_dir + '/val//' + cls)
os.makedirs(root_dir + '/test//' + cls)
# Copy-pasting images
for name in train_FileNames:
shutil.copy(name, root_dir + '/train//' + cls)
for name in val_FileNames:
shutil.copy(name, root_dir + '/val//' + cls)
for name in test_FileNames:
shutil.copy(name, root_dir + '/test//' + cls)
print("########### Train Test Val Script Ended ###########")
train_test_split()
Run Code Online (Sandbox Code Playgroud)
我开发了一个名为 python_splitter 的 python 包,可以在一行中自动执行整个过程。这将自动生成 Train-Test-Val 或 Train-Test 文件夹。了解更多: https: //github.com/bharatadk/python_splitter
! pip install python_splitter
import python_splitter
python_splitter.split_from_folder("SOURCE_FOLDER", train=0.5, test=0.3, val=0.2)
Run Code Online (Sandbox Code Playgroud)
**I have made better code which you have to run once **
## I made this for TB vs Normal image datasets by improving above code
## import libraries
import os
import numpy as np
import shutil
import random
# creating train / val /test
root_dir = 'TB_Chest_Radiography_Database/'
new_root = 'AllDatasets/'
classes = ['Normal', 'Tuberculosis']
for cls in classes:
os.makedirs(root_dir + new_root+ 'train/' + cls)
os.makedirs(root_dir +new_root +'val/' + cls)
os.makedirs(root_dir +new_root + 'test/' + cls)
## creating partition of the data after shuffeling
for cls in classes:
src = root_dir + cls # folder to copy images from
print(src)
allFileNames = os.listdir(src)
np.random.shuffle(allFileNames)
## here 0.75 = training ratio , (0.95-0.75) = validation ratio , (1-0.95) =
##training ratio
train_FileNames,val_FileNames,test_FileNames = np.split(np.array(allFileNames),[int(len(allFileNames)*0.75),int(len(allFileNames)*0.95)])
# #Converting file names from array to list
train_FileNames = [src+'/'+ name for name in train_FileNames]
val_FileNames = [src+'/' + name for name in val_FileNames]
test_FileNames = [src+'/' + name for name in test_FileNames]
print('Total images : '+ cls + ' ' +str(len(allFileNames)))
print('Training : '+ cls + ' '+str(len(train_FileNames)))
print('Validation : '+ cls + ' ' +str(len(val_FileNames)))
print('Testing : '+ cls + ' '+str(len(test_FileNames)))
## Copy pasting images to target directory
for name in train_FileNames:
shutil.copy(name, root_dir + new_root+'train/'+cls )
for name in val_FileNames:
shutil.copy(name, root_dir +new_root+'val/'+cls )
for name in test_FileNames:
shutil.copy(name,root_dir + new_root+'test/'+cls )
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
28289 次 |
| 最近记录: |