使用 group_by 时添加总体平均值

Not*_*s82 4 r dplyr

我正在使用 dplyr 包生成一些表,并且正在使用该adorn_totals("row")函数。

当我想要对组内的值求和时,这种方法效果很好,但在某些情况下,我想要总体平均值而不是总和。有 adorn_means 函数吗?

示例代码:

Regions2 <- Data %>%
  filter(!is.na(REGION))%>%
  group_by(REGION) %>%
  summarise(Numberofpeople=length(Names))%>%
  adorn_totals("row")
Run Code Online (Sandbox Code Playgroud)

这里我的“总计”行只是该地区内所有人的总和。这给了我

REGION          NumberofPeople
East Midlands       578,943
East of England     682,917
London            1,247,540
North East          245,830
North West          742,886
South East          963,040
South West          623,684
West Midlands       653,335
Yorkshire           553,853
TOTAL             6,292,028
Run Code Online (Sandbox Code Playgroud)

我的下一段代码生成每个地区的平均工资,但我想添加总的总体平均工资

Regions3 <- Data %>%
  filter(!is.na(REGION))%>%
  filter(!is.na(AVGSalary))%>%
  group_by(REGION) %>%
  summarise(AverageSalary=mean(AVGSalary))
Run Code Online (Sandbox Code Playgroud)

如果我像以前一样使用,adnorn_totals("row")我只会得到平均值的总和,而不是数据集的总体平均值。

我如何获得总体平均值?

更新一些 noddy 数据:

数据

people  region      salary
person1 London      1000
person2 South West  1050
person3 South East  900
person4 London      800
person5 Scotland    1020
person6 South West  750
person7 East        600
person8 London      1200
person9 South West  1150
Run Code Online (Sandbox Code Playgroud)

因此,组平均值为:

London      1000
South West  983.33
South East  900
Scotland    1020
East        600
Run Code Online (Sandbox Code Playgroud)

我想将总数添加到底部

Total    941.11
Run Code Online (Sandbox Code Playgroud)

G. *_*eck 6

1)因为总体平均值是平均值的加权平均值(而不是平均值的简单平均值),即它是 941 而不是 901,所以我们维护一列,n以便最终我们可以正确计算总体平均值。尽管显示的数据没有任何我们使用的 NA,drop_na以便将其与此类数据一起使用。这将删除任何包含 NA 的行。

library(dplyr)
library(tidyr)

Region %>%
  drop_na %>%
  group_by(region) %>%
  summarize(avg = mean(salary), n = n()) %>%
  ungroup %>%
  bind_rows(summarize(., region = "Overall Avg", 
                         avg = sum(avg * n) / sum(n), 
                         n = sum(n))) %>%
  select(-n)
Run Code Online (Sandbox Code Playgroud)

给予:

# A tibble: 6 x 2
  region        avg
  <chr>       <dbl>
1 East         600 
2 London      1000 
3 Scotland    1020 
4 South East   900 
5 South West   983.
6 Overall Avg  941.
Run Code Online (Sandbox Code Playgroud)

2)另一种方法是通过返回原始数据来构建总体平均线:

Region %>%
  drop_na %>%
  group_by(region) %>%
  summarize(avg = mean(salary)) %>%
  ungroup %>%
  bind_rows(summarize(Region %>% drop_na, region = "Overall Avg", avg = mean(salary)))
Run Code Online (Sandbox Code Playgroud)

给予:

# A tibble: 6 x 2
  region        avg
  <chr>       <dbl>
1 East         600 
2 London      1000 
3 Scotland    1020 
4 South East   900 
5 South West   983.
6 Overall Avg  941.
Run Code Online (Sandbox Code Playgroud)

2a)如果您反对提及Region两次,请尝试此操作。

Region_ <- Region %>% 
  drop_na

Region_ %>%
  group_by(region) %>%
  summarize(avg = mean(salary)) %>%
  ungroup %>%
  bind_rows(summarize(Region_, region = "Overall Avg", avg = mean(salary)))
Run Code Online (Sandbox Code Playgroud)

2b)或作为单个管道,现在Region_位于管道本地,并将在管道完成后自动删除:

Region %>%
  drop_na %>%
  { Region_ <- .
    Region_ %>%
      group_by(region) %>%
      summarize(avg = mean(salary)) %>%
      ungroup %>%
      bind_rows(summarize(Region_, region = "Overall Avg", avg = mean(salary)))
  }
Run Code Online (Sandbox Code Playgroud)

笔记

我们用它作为输入:

Lines <- "people  region      salary
person1 London      1000
person2 South West  1050
person3 South East  900
person4 London      800
person5 Scotland    1020
person6 South West  750
person7 East        600
person8 London      1200
person9 South West  1150"

library(gsubfn)
Region <- read.pattern(text = Lines, pattern = "^(\\S+) +(.*) (\\d+)$", 
  as.is = TRUE, skip = 1, strip.white = TRUE,
  col.names = read.table(text = Lines, nrow = 1, as.is = TRUE))
Run Code Online (Sandbox Code Playgroud)