google colab 在进程中设置“^C”

Ita*_*osé 8 python object-detection tensorflow object-detection-api google-colaboratory

我正在运行从本教程中获得的代码, 我正在尝试运行tensorflow对象检测api,所有代码都运行良好,如果运行所有调用,所有单元格都会运行良好,最后,我的图像被分类。

Buuut 有 1 个电池不能很好地工作,它可以工作,但不喜欢它必须工作。

当我用它训练我的模型时!python legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config ,启动tensorflow并开始训练,但它只运行3步、4步,有时20、21、23步,最后,谷歌colab^C在过程中设置了a

我永远无法完成我的培训,因为谷歌合作实验室关闭了我的流程,有人知道发生了什么吗?

我已经尝试使用 GPU 和 TPU 实例。

[...]
INFO:tensorflow:Restoring parameters from training/model.ckpt-0
I1022 20:41:48.368024 139794549495680 tf_logging.py:115] Restoring parameters from training/model.ckpt-0
INFO:tensorflow:Running local_init_op.
I1022 20:41:52.779153 139794549495680 tf_logging.py:115] Running local_init_op.
INFO:tensorflow:Done running local_init_op.
I1022 20:41:52.997912 139794549495680 tf_logging.py:115] Done running local_init_op.
INFO:tensorflow:Starting Session.
I1022 20:41:59.072830 139794549495680 tf_logging.py:115] Starting Session.
INFO:tensorflow:Saving checkpoint to path training/model.ckpt
I1022 20:41:59.245162 139793493063424 tf_logging.py:115] Saving checkpoint to path training/model.ckpt
INFO:tensorflow:Starting Queues.
I1022 20:41:59.252097 139794549495680 tf_logging.py:115] Starting Queues.
INFO:tensorflow:global_step/sec: 0
I1022 20:42:10.151180 139793484670720 tf_logging.py:159] global_step/sec: 0
INFO:tensorflow:Recording summary at step 0.
I1022 20:42:16.119055 139793476278016 tf_logging.py:115] Recording summary at step 0.
INFO:tensorflow:global step 1: loss = 14.0911 (28.770 sec/step)
I1022 20:42:28.496783 139794549495680 tf_logging.py:115] global step 1: loss = 14.0911 (28.770 sec/step)
INFO:tensorflow:global step 2: loss = 12.4958 (10.529 sec/step)
I1022 20:42:39.334129 139794549495680 tf_logging.py:115] global step 2: loss = 12.4958 (10.529 sec/step)
INFO:tensorflow:global step 3: loss = 11.6073 (8.267 sec/step)
I1022 20:42:47.601801 139794549495680 tf_logging.py:115] global step 3: loss = 11.6073 (8.267 sec/step)
^C
Run Code Online (Sandbox Code Playgroud)

Jit*_*ddi 0

您可以使用以下 GitHub存储库在 Google Colab 上训练张量流对象检测模型。它有一个自述文件、一个 .ipynb 文件、一个模型配置文件和一个示例 label_map 文件。如果您遇到任何问题,请告诉我。希望这可以帮助