Har*_*ari 2 python google-bigquery google-cloud-dataflow apache-beam
我是Apache Beam的新手,我在其中尝试编写管道以从Google BigQuery提取数据,然后使用Python将数据以CSV格式写入GCS。
使用,beam.io.read(beam.io.BigQuerySource())我能够从BigQuery读取数据,但不确定如何将其以CSV格式写入GCS。
是否有实现相同功能的自定义功能,能否请您帮我吗?
import logging
import apache_beam as beam
PROJECT='project_id'
BUCKET='project_bucket'
def run():
argv = [
'--project={0}'.format(PROJECT),
'--job_name=readwritebq',
'--save_main_session',
'--staging_location=gs://{0}/staging/'.format(BUCKET),
'--temp_location=gs://{0}/staging/'.format(BUCKET),
'--runner=DataflowRunner'
]
with beam.Pipeline(argv=argv) as p:
# Execute the SQL in big query and store the result data set into given Destination big query table.
BQ_SQL_TO_TABLE = p | 'read_bq_view' >> beam.io.Read(
beam.io.BigQuerySource(query = 'Select * from `dataset.table`', use_standard_sql=True))
# Extract data from Bigquery to GCS in CSV format.
# This is where I need your help
BQ_SQL_TO_TABLE | 'Write_bq_table' >> beam.io.WriteToBigQuery(
table='tablename',
dataset='datasetname',
project='project_id',
schema='name:string,gender:string,count:integer',
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()
Run Code Online (Sandbox Code Playgroud)
您可以通过WriteToText添加.csv后缀和来实现headers。考虑到您需要将查询结果解析为CSV格式。作为示例,我使用了莎士比亚公共数据集和以下查询:
从`bigquery-public-data.samples.shakespeare`中选择单词,单词数,语料库,其中CHAR_LENGTH(word)> 3按单词数计数排序限制10
现在,我们通过以下方式读取查询结果:
BQ_DATA = p | 'read_bq_view' >> beam.io.Read(
beam.io.BigQuerySource(query=query, use_standard_sql=True))
Run Code Online (Sandbox Code Playgroud)
BQ_DATA 现在包含键值对:
{u'corpus': u'hamlet', u'word': u'HAMLET', u'word_count': 407}
{u'corpus': u'kingrichardiii', u'word': u'that', u'word_count': 319}
{u'corpus': u'othello', u'word': u'OTHELLO', u'word_count': 313}
Run Code Online (Sandbox Code Playgroud)
我们可以应用一个beam.Map函数只产生值:
{u'corpus': u'hamlet', u'word': u'HAMLET', u'word_count': 407}
{u'corpus': u'kingrichardiii', u'word': u'that', u'word_count': 319}
{u'corpus': u'othello', u'word': u'OTHELLO', u'word_count': 313}
Run Code Online (Sandbox Code Playgroud)
摘录BQ_VALUES:
[u'hamlet', u'HAMLET', 407]
[u'kingrichardiii', u'that', 319]
[u'othello', u'OTHELLO', 313]
Run Code Online (Sandbox Code Playgroud)
最后再次映射,使所有列值用逗号而不是列表分开(考虑到如果双引号可以出现在字段中,则需要转义双引号):
BQ_VALUES = BQ_DATA | 'read values' >> beam.Map(lambda x: x.values())
Run Code Online (Sandbox Code Playgroud)
现在,我们将结果后缀和标头写入GCS:
[u'hamlet', u'HAMLET', 407]
[u'kingrichardiii', u'that', 319]
[u'othello', u'OTHELLO', 313]
Run Code Online (Sandbox Code Playgroud)
书面结果:
BQ_CSV = BQ_VALUES | 'CSV format' >> beam.Map(
lambda row: ', '.join(['"'+ str(column) +'"' for column in row]))
Run Code Online (Sandbox Code Playgroud)