如何在R中的For循环中正确使用group_by()和summarize()

Max*_*Max 5 grouping for-loop r summary dplyr

我正在尝试计算一些摘要信息,以帮助我检查数据集中不同组中的异常值.我能得到的那种输出的我想用dplyr::group_by()dplyr::summarise()-与每个组给定变量的概要信息的数据帧.像这样的东西:

Sepal.Length_outlier_check <- iris %>%
  dplyr::group_by(Species) %>% 
  dplyr::summarise(min = min(Sepal.Length, na.rm = TRUE),
                   max = max(Sepal.Length, na.rm = TRUE),
                   median = median(Sepal.Length, na.rm = TRUE),
                   MAD = mad(Sepal.Length, na.rm = TRUE),
                   MAD_lowlim = median - (3 * MAD),
                   MAD_highlim = median + (3 * MAD),
                   Outliers_low = any(Sepal.Length < MAD_lowlim, na.rm = TRUE),
                   Outliers_high = any(Sepal.Length > MAD_highlim, na.rm = TRUE)
                   )

Sepal.Length_outlier_check
Run Code Online (Sandbox Code Playgroud)

但是,我希望能够将它放在For循环中,以便能够为数据集中的每个不同变量生成类似的汇总数据帧.我是新手使用循​​环,但我认为它可能需要看起来像这样:

vars <- list(colnames(iris))

for (i in vars) {

x <- iris %>%
  dplyr::group_by(Species) %>% 
  dplyr::summarise(min = min(i, na.rm = TRUE),
                   max = max(i, na.rm = TRUE),
                   median = median(i, na.rm = TRUE),
                   MAD = mad(i, na.rm = TRUE),
                   MAD_lowlim = median - (3 * MAD),
                   MAD_highlim = median + (3 * MAD),
                   Outliers_low = any(i < MAD_lowlim, na.rm = TRUE),
                   Outliers_high = any(i > MAD_highlim, na.rm = TRUE)
                   )

assign(paste(i, "Outlier_check", sep = "_"), x)

}
Run Code Online (Sandbox Code Playgroud)

我知道这不起作用,因为在摘要函数i中实际上并没有引用任何数据.我不知道我需要做些什么才能使它工作!我非常感谢你的帮助,或者对如何更优雅地完成所有这些的任何建议.

我不愿意使用dplyr :: summarise_all(),因为它为所有变量输出一个汇总表,而我正在处理的真实数据集有很多变量,这个汇总表会变得太大而无法轻松查看它.

谢谢.

Tun*_*ung 6

您还可以编写一个函数,使其更容易、更灵活。使用整洁的评估方法,您可以rlang::sym()将字符串转换为变量,然后使用 (bang bang) 取消引用summarise()!!

library(dplyr)

check_outlier <- function(df, .groupvar, .checkvar) {

  .groupvar <- sym(.groupvar)
  .checkvar <- sym(.checkvar)

  df_outlier_check <- df %>%
    dplyr::group_by(!! .groupvar) %>% 
    dplyr::summarise(min = min(!! .checkvar, na.rm = TRUE),
                     max = max(!! .checkvar, na.rm = TRUE),
                     median = median(!! .checkvar, na.rm = TRUE),
                     MAD = mad(!! .checkvar, na.rm = TRUE),
                     MAD_lowlim = median - (3 * MAD),
                     MAD_highlim = median + (3 * MAD),
                     Outliers_low = any(!! .checkvar < MAD_lowlim, na.rm = TRUE),
                     Outliers_high = any(!! .checkvar > MAD_highlim, na.rm = TRUE)
    )

  return(df_outlier_check)

}

# test function
check_outlier(iris, "Species", "Sepal.Length")

#> # A tibble: 3 x 9
#>   Species   min   max median   MAD MAD_lowlim MAD_highlim Outliers_low
#>   <fct>   <dbl> <dbl>  <dbl> <dbl>      <dbl>       <dbl> <lgl>       
#> 1 setosa    4.3   5.8    5   0.297       4.11        5.89 FALSE       
#> 2 versic~   4.9   7      5.9 0.519       4.34        7.46 FALSE       
#> 3 virgin~   4.9   7.9    6.5 0.593       4.72        8.28 FALSE       
#> # ... with 1 more variable: Outliers_high <lgl>
Run Code Online (Sandbox Code Playgroud)

循环遍历所有变量并将结果合并到单个数据框中,使用purrr::map_df()

library(purrr)
vars <- c("Sepal.Length", "Sepal.Width",  "Petal.Length", "Petal.Width")
vars %>% 
  set_names() %>% 
  map_df(~ check_outlier(iris, "Species", .x), .id = 'Variable')

#> # A tibble: 12 x 10
#>    Variable Species   min   max median   MAD MAD_lowlim MAD_highlim
#>    <chr>    <fct>   <dbl> <dbl>  <dbl> <dbl>      <dbl>       <dbl>
#>  1 Sepal.L~ setosa    4.3   5.8   5    0.297      4.11         5.89
#>  2 Sepal.L~ versic~   4.9   7     5.9  0.519      4.34         7.46
#>  3 Sepal.L~ virgin~   4.9   7.9   6.5  0.593      4.72         8.28
#>  4 Sepal.W~ setosa    2.3   4.4   3.4  0.371      2.29         4.51
#>  5 Sepal.W~ versic~   2     3.4   2.8  0.297      1.91         3.69
#>  6 Sepal.W~ virgin~   2.2   3.8   3    0.297      2.11         3.89
#>  7 Petal.L~ setosa    1     1.9   1.5  0.148      1.06         1.94
#>  8 Petal.L~ versic~   3     5.1   4.35 0.519      2.79         5.91
#>  9 Petal.L~ virgin~   4.5   6.9   5.55 0.667      3.55         7.55
#> 10 Petal.W~ setosa    0.1   0.6   0.2  0          0.2          0.2 
#> 11 Petal.W~ versic~   1     1.8   1.3  0.222      0.633        1.97
#> 12 Petal.W~ virgin~   1.4   2.5   2    0.297      1.11         2.89
#> # ... with 2 more variables: Outliers_low <lgl>, Outliers_high <lgl>
Run Code Online (Sandbox Code Playgroud)

由reprex 包于 2018 年 10 月 20 日创建(v0.2.1.9000)


jdo*_*res 3

您还可以创建这些按变量/物种的摘要,无需循环或单独的函数,只需对gather非物种列进行分组和汇总即可:

library(tidyverse)

iris.summary <- iris %>% 
  gather(variable, value, -Species) %>% 
  group_by(variable, Species) %>% 
  summarize(
    min = min(value, na.rm = TRUE),
    max = max(value, na.rm = TRUE),
    median = median(value, na.rm = TRUE),
    MAD = mad(value, na.rm = TRUE),
    MAD_lowlim = median - (3 * MAD),
    MAD_highlim = median + (3 * MAD),
    Outliers_low = any(value < MAD_lowlim, na.rm = TRUE),
    Outliers_high = any(value > MAD_highlim, na.rm = TRUE)
  )

   variable     Species      min   max median   MAD MAD_lowlim MAD_highlim Outliers_low Outliers_high
   <chr>        <fct>      <dbl> <dbl>  <dbl> <dbl>      <dbl>       <dbl> <lgl>        <lgl>        
 1 Petal.Length setosa       1     1.9   1.5  0.148      1.06         1.94 TRUE         FALSE        
 2 Petal.Length versicolor   3     5.1   4.35 0.519      2.79         5.91 FALSE        FALSE        
 3 Petal.Length virginica    4.5   6.9   5.55 0.667      3.55         7.55 FALSE        FALSE        
 4 Petal.Width  setosa       0.1   0.6   0.2  0          0.2          0.2  TRUE         TRUE         
 5 Petal.Width  versicolor   1     1.8   1.3  0.222      0.633        1.97 FALSE        FALSE        
 6 Petal.Width  virginica    1.4   2.5   2    0.297      1.11         2.89 FALSE        FALSE        
 7 Sepal.Length setosa       4.3   5.8   5    0.297      4.11         5.89 FALSE        FALSE        
 8 Sepal.Length versicolor   4.9   7     5.9  0.519      4.34         7.46 FALSE        FALSE        
 9 Sepal.Length virginica    4.9   7.9   6.5  0.593      4.72         8.28 FALSE        FALSE        
10 Sepal.Width  setosa       2.3   4.4   3.4  0.371      2.29         4.51 FALSE        FALSE        
11 Sepal.Width  versicolor   2     3.4   2.8  0.297      1.91         3.69 FALSE        FALSE        
12 Sepal.Width  virginica    2.2   3.8   3    0.297      2.11         3.89 FALSE        FALSE   
Run Code Online (Sandbox Code Playgroud)