sch*_*ltz 2 c++ boost-graph c++14
我有以下图表
boost::adjacency_list<boost::setS, boost::vecS, boost::directedS, GraphItem>;
Run Code Online (Sandbox Code Playgroud)
我需要一直到父节点的路径到根节点。我无法更改图形的类型,是否有任何算法以及它有什么复杂性?
假设你知道你的图实际上是一棵树,你可以使用拓扑排序来找到根。
如果你只知道它是一个 DAG,你可能应该通过在反向图中找到叶节点来找到根——这有点贵。但也许你只是事先知道根源,所以我会认为这个问题已经在这个演示中解决了。
我将从你的图表开始:
struct GraphItem { std::string name; };
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::directedS, GraphItem>;
Run Code Online (Sandbox Code Playgroud)
该名称便于演示目的。您可以在该捆绑包中拥有您需要的任何东西。让我们添加一些可读的 typedef:
using Vertex = Graph::vertex_descriptor;
using Order = std::vector<Vertex>;
using Path = std::deque<Vertex>;
static constexpr Vertex NIL = -1;
Run Code Online (Sandbox Code Playgroud)
要找到那个根,你会写:
Vertex find_root(Graph const& g) { // assuming there's only 1
Order order;
topological_sort(g, back_inserter(order));
return order.back();
}
Run Code Online (Sandbox Code Playgroud)
要从给定的根获取所有最短路径,您只需要一个 BFS(如果您的边权重都相等,则相当于 Dijkstra 的):
Order shortest_paths(Vertex root, Graph const& g) {
// find shortest paths from the root
Order predecessors(num_vertices(g), NIL);
auto recorder = boost::record_predecessors(predecessors.data(), boost::on_examine_edge());
boost::breadth_first_search(g, root, boost::visitor(boost::make_bfs_visitor(recorder)));
// assert(boost::count(predecessors, NIL) == 1); // if only one root allowed
assert(predecessors[root] == NIL);
return predecessors;
}
Run Code Online (Sandbox Code Playgroud)
根据 BFS 返回的顺序,您可以找到您要查找的路径:
Path path(Vertex target, Order const& predecessors) {
Path path { target };
for (auto pred = predecessors[target]; pred != NIL; pred = predecessors[pred]) {
path.push_back(pred);
}
return path;
}
Run Code Online (Sandbox Code Playgroud)
您可以打印给定合适的属性映射以获取显示名称的那些:
template <typename Name> void print(Path path, Name name_map) {
while (!path.empty()) {
std::cout << name_map[path.front()];
path.pop_front();
if (!path.empty()) std::cout << " <- ";
}
std::cout << std::endl;
}
Run Code Online (Sandbox Code Playgroud)
让我们开始演示
int main() {
Graph g;
// name helpers
auto names = get(&GraphItem::name, g);
Run Code Online (Sandbox Code Playgroud)
这是使用属性映射从顶点获取名称的一个很好的演示。让我们定义一些助手,这样你就可以找到例如 node by_name("E"):
auto named = [=] (std::string target) { return [=](Vertex vd) { return names[vd] == target; }; };
auto by_name = [=,&g](std::string target) { return *boost::find_if(vertices(g), named(target)); };
Run Code Online (Sandbox Code Playgroud)
让我们g用示例数据填充图形:
// read sample graph
{
boost::dynamic_properties dp;
dp.property("node_id", names);
read_graphviz(R"( digraph {
A -> H;
B -> D; B -> F; C -> D; C -> G;
E -> F; E -> G; G -> H;
root -> A; root -> B
})", g, dp);
}
Run Code Online (Sandbox Code Playgroud)
该图如下所示:
请注意,此特定图形具有多个根。返回的那个
find_root恰好是最远的一个,因为它是最后找到的。
现在从给定的根中找到一些节点:
for (auto root : { find_root(g), by_name("E") }) {
auto const order = shortest_paths(root, g);
std::cout << " -- From " << names[root] << "\n";
for (auto target : { "G", "D", "H" })
print(path(by_name(target), order), names);
}
Run Code Online (Sandbox Code Playgroud)
哪个打印
-- From root
G
D <- B <- root
H <- A <- root
-- From E
G <- E
D
H <- G <- E
Run Code Online (Sandbox Code Playgroud)
#include <boost/graph/adjacency_list.hpp> // adjacency_list
#include <boost/graph/topological_sort.hpp> // find_if
#include <boost/graph/breadth_first_search.hpp> // shortest paths
#include <boost/range/algorithm.hpp> // range find_if
#include <boost/graph/graphviz.hpp> // read_graphviz
#include <iostream>
struct GraphItem { std::string name; };
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::directedS, GraphItem>;
using Vertex = Graph::vertex_descriptor;
using Order = std::vector<Vertex>;
using Path = std::deque<Vertex>;
static constexpr Vertex NIL = -1;
Vertex find_root(Graph const& g);
Order shortest_paths(Vertex root, Graph const& g);
Path path(Vertex target, Order const& predecessors);
template <typename Name> void print(Path path, Name name_map);
int main() {
Graph g;
// name helpers
auto names = get(&GraphItem::name, g);
auto named = [=] (std::string target) { return [=](Vertex vd) { return names[vd] == target; }; };
auto by_name = [=,&g](std::string target) { return *boost::find_if(vertices(g), named(target)); };
// read sample graph
{
boost::dynamic_properties dp;
dp.property("node_id", names);
read_graphviz(R"( digraph {
A -> H;
B -> D; B -> F; C -> D; C -> G;
E -> F; E -> G; G -> H;
root -> A; root -> B
})", g, dp);
}
// 3 paths from 2 different roots
for (auto root : { find_root(g), by_name("E") }) {
auto const order = shortest_paths(root, g);
std::cout << " -- From " << names[root] << "\n";
for (auto target : { "G", "D", "H" })
print(path(by_name(target), order), names);
}
}
Vertex find_root(Graph const& g) { // assuming there's only 1
Order order;
topological_sort(g, back_inserter(order));
return order.back();
}
Order shortest_paths(Vertex root, Graph const& g) {
// find shortest paths from the root
Order predecessors(num_vertices(g), NIL);
auto recorder = boost::record_predecessors(predecessors.data(), boost::on_examine_edge());
boost::breadth_first_search(g, root, boost::visitor(boost::make_bfs_visitor(recorder)));
// assert(boost::count(predecessors, NIL) == 1); // if only one root allowed
assert(predecessors[root] == NIL);
return predecessors;
}
Path path(Vertex target, Order const& predecessors) {
Path path { target };
for (auto pred = predecessors[target]; pred != NIL; pred = predecessors[pred]) {
path.push_back(pred);
}
return path;
}
template <typename Name>
void print(Path path, Name name_map) {
while (!path.empty()) {
std::cout << name_map[path.front()];
path.pop_front();
if (!path.empty()) std::cout << " <- ";
}
std::cout << std::endl;
}
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
557 次 |
| 最近记录: |