Pau*_*aul 104 python plot matplotlib curvesmoothing
我有以下简单的脚本绘制图表:
import matplotlib.pyplot as plt
import numpy as np
T = np.array([6, 7, 8, 9, 10, 11, 12])
power = np.array([1.53E+03, 5.92E+02, 2.04E+02, 7.24E+01, 2.72E+01, 1.10E+01, 4.70E+00])
plt.plot(T,power)
plt.show()
Run Code Online (Sandbox Code Playgroud)
就像现在一样,这条直线从一点到另一点直线看起来不错,但在我看来可能更好.我想要的是平滑点之间的界限.在Gnuplot,我会用smooth cplines.
在PyPlot中有一种简单的方法吗?我找到了一些教程,但它们看起来都相当复杂.
Oli*_*ier 150
您可以使用scipy.interpolate.spline自己平滑数据:
from scipy.interpolate import spline
# 300 represents number of points to make between T.min and T.max
xnew = np.linspace(T.min(), T.max(), 300)
power_smooth = spline(T, power, xnew)
plt.plot(xnew,power_smooth)
plt.show()
Run Code Online (Sandbox Code Playgroud)
spline在scipy 0.19.0中已弃用,请改用Bspline类.
切换spline到BSpline不是简单的复制/粘贴,需要稍微调整:
from scipy.interpolate import make_interp_spline, BSpline
# 300 represents number of points to make between T.min and T.max
xnew = np.linspace(T.min(), T.max(), 300)
spl = make_interp_spline(T, power, k=3) # type: BSpline
power_smooth = spl(xnew)
plt.plot(xnew, power_smooth)
plt.show()
Run Code Online (Sandbox Code Playgroud)
Tom*_*eck 19
我发现的最简单的实现之一是使用 Tensorboard 使用的指数移动平均线:
def smooth(scalars: List[float], weight: float) -> List[float]: # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
ax.plot(x_labels, smooth(train_data, .9), label="Train Smooth") # label="Train") # uncomment to reproduce figure below
ax.plot(x_labels, train_data, label="Train") # label="Train Smooth") # uncomment to reproduce figure below
Run Code Online (Sandbox Code Playgroud)
Saj*_*uzi 11
对于此示例,样条曲线效果很好,但是如果函数固有地不平滑,并且您想要平滑的版本,则还可以尝试:
from scipy.ndimage.filters import gaussian_filter1d
ysmoothed = gaussian_filter1d(y, sigma=2)
plt.plot(x, ysmoothed)
plt.show()
Run Code Online (Sandbox Code Playgroud)
如果增加sigma,则可以获得更平滑的功能。
谨慎行事。它会修改原始值,可能不是您想要的。
有关scipy.interpolate一些示例,请参阅文档。
以下示例演示了其用于线性和三次样条插值的用途:
Run Code Online (Sandbox Code Playgroud)import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d # Define x, y, and xnew to resample at. x = np.linspace(0, 10, num=11, endpoint=True) y = np.cos(-x**2/9.0) xnew = np.linspace(0, 10, num=41, endpoint=True) # Define interpolators. f_linear = interp1d(x, y) f_cubic = interp1d(x, y, kind='cubic') # Plot. plt.plot(x, y, 'o', label='data') plt.plot(xnew, f_linear(xnew), '-', label='linear') plt.plot(xnew, f_cubic(xnew), '--', label='cubic') plt.legend(loc='best') plt.show()
稍微修改以提高可读性。
这是日期的简单解决方案:
from scipy.interpolate import make_interp_spline
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as dates
from datetime import datetime
data = {
datetime(2016, 9, 26, 0, 0): 26060, datetime(2016, 9, 27, 0, 0): 23243,
datetime(2016, 9, 28, 0, 0): 22534, datetime(2016, 9, 29, 0, 0): 22841,
datetime(2016, 9, 30, 0, 0): 22441, datetime(2016, 10, 1, 0, 0): 23248
}
#create data
date_np = np.array(list(data.keys()))
value_np = np.array(list(data.values()))
date_num = dates.date2num(date_np)
# smooth
date_num_smooth = np.linspace(date_num.min(), date_num.max(), 100)
spl = make_interp_spline(date_num, value_np, k=3)
value_np_smooth = spl(date_num_smooth)
# print
plt.plot(date_np, value_np)
plt.plot(dates.num2date(date_num_smooth), value_np_smooth)
plt.show()
Run Code Online (Sandbox Code Playgroud)