基于元组的pandas数据框子集

Har*_*pta 2 python indexing dataframe python-3.x pandas

我有一个这样的数据集

Firstnames = ['AA','BB','CC','AA','CC']
Lastnames = ['P', 'Q', 'R', 'P', 'R']
values = [10, 13, 3, 22, 45]

df = pd.DataFrame(data = list(zip(Firstnames,Lastnames,values)), \
                  columns=['Firstnames','Lastnames','values'])
df

    Firstnames  Lastnames   values
0   AA          P           10
1   BB          Q           13
2   CC          R           3
3   AA          P           22
4   CC          R           45
Run Code Online (Sandbox Code Playgroud)

我有一个像这样的元组数组

lst = array([('AA', 'P'), ('BB', 'Q')])
Run Code Online (Sandbox Code Playgroud)

我想对df进行子集化,这样Firstname == 'AA' & Lastnames == 'P'Firstname == 'BB' & Lastnames == 'Q'

我可以手动执行此操作,但是我的数组非常大,我想以编程方式执行此操作

我的预期输出将是

Firstnames  Lastnames   values
AA          P           10
AA          P           22
BB          Q           13
Run Code Online (Sandbox Code Playgroud)

raf*_*elc 7

agg+isin

由于元组是可散列的,您可以使用聚合isin并将其与您的. 直接使用和列表而不是帮助。lastlstnp.array

>>> lst = [('AA', 'P'), 
           ('BB', 'Q')]

>>> mask = df[['Firstnames', 'Lastnames']].agg(tuple, 1).isin(lst)
>>> df[mask]

    Firstnames  Lastnames   values
0   AA          P           10
1   BB          Q           13
3   AA          P           22
Run Code Online (Sandbox Code Playgroud)

如果你愿意,你可以sort_values通过名字

>>> df[mask].sort_values(by=['Firstnames', 'Lastnames'])

    Firstnames  Lastnames   values
0   AA          P           10
3   AA          P           22
1   BB          Q           13
Run Code Online (Sandbox Code Playgroud)

pd.concat

您还可以使用列表理解pd.concat较小的lsts

>>> pd.concat([df[df.Firstnames.eq(a) & df.Lastnames.eq(b)] for a,b in lst])

    Firstnames  Lastnames   values
0   AA          P           10
3   AA          P           22
1   BB          Q           13
Run Code Online (Sandbox Code Playgroud)

时间:

lst,大df

df = pd.concat([df]*10000).reset_index(drop=True)

%timeit mask = df[['Firstnames', 'Lastnames']].agg(tuple, 1).isin(lst); df[mask].sort_values(by=['Firstnames', 'Lastnames'])
942 ms ± 71.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit pd.concat([df[df.Firstnames.eq(a) & df.Lastnames.eq(b)] for a,b in lst])
16.2 ms ± 355 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Run Code Online (Sandbox Code Playgroud)

对于大lst和小df

c = list(map(''.join, itertools.product(string.ascii_uppercase, string.ascii_uppercase)))
lst = [(a,b) for a,b in zip(c, list(string.ascii_uppercase)*26)]
df = pd.DataFrame({'Firstnames': c, 'Lastnames': list(string.ascii_uppercase)*26, 'values': 10})

%timeit mask = df[['Firstnames', 'Lastnames']].agg(tuple, 1).isin(lst); df[mask].sort_values(by=['Firstnames', 'Lastnames'])
15.1 ms ± 301 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit pd.concat([df[df.Firstnames.eq(a) & df.Lastnames.eq(b)] for a,b in lst])
781 ms ± 33.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Run Code Online (Sandbox Code Playgroud)