我有以下示例数据集,我想按未包含在数据框中的自定义顺序对索引列进行排序。到目前为止,我一直无法解决这个问题。例子:
import pandas as pd
data = {'s':[1,1,1,1],
'am':['cap', 'cap', 'sea', 'sea'],
'cat':['i', 'o', 'i', 'o'],
'col1':[.55, .44, .33, .22],
'col2':[.77, .66, .55, .44]}
df = pd.DataFrame(data=data)
df.set_index(['s', 'am', 'cat'], inplace=True)
Out[1]:
col1 col2
s am cat
1 cap i 0.55 0.77
o 0.44 0.66
sea i 0.33 0.55
o 0.22 0.44
Run Code Online (Sandbox Code Playgroud)
我想要的是以下内容:
Out[2]:
col1 col2
s am cat
1 sea i 0.33 0.55
o 0.22 0.44
cap i 0.55 0.77
o 0.44 0.66
Run Code Online (Sandbox Code Playgroud)
并且我可能还想按顺序 ['o', 'i'] 对 'cat' 进行排序。
df.sort_values(df.columns.tolist()).sort_index(level=1, ascending=False,
sort_remaining=False)
col1 col2
s am cat
1 sea i 0.33 0.55
o 0.22 0.44
cap i 0.55 0.77
o 0.44 0.66
Run Code Online (Sandbox Code Playgroud)
将索引转换为categorical以获取自定义顺序。
data = {'s':[1,1,1,1],
'am':['cap', 'cap', 'sea', 'sea'],
'cat':['i', 'j', 'k', 'l'],
'col1':[.55, .44, .33, .22],
'col2':[.77, .66, .55, .44]}
df = pd.DataFrame(data=data)
df.set_index(['s', 'am', 'cat'], inplace=True)
idx = pd.Categorical(df.index.get_level_values(2).values,
categories=['j','i','k','l'],
ordered=True)
df.index.set_levels(idx, level='cat', inplace=True)
df.reset_index().sort_values('cat').set_index(['s','am','cat'])
col1 col2
s am cat
1 cap j 0.44 0.66
i 0.55 0.77
sea k 0.33 0.55
l 0.22 0.44
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2186 次 |
| 最近记录: |