Let*_*t4U 3 python cuda tensorflow
我已经安装(我认为)带有 CUDA 支持的 TF 使用 command pip3.6 install tensorflow-gpu
,每个 TF 安装页面。
我的本地 CUDA 安装是 CUDA 9.0 和 CUDNN 7.3.1 in /usr/local/cuda-9.0
.
每个提示https://github.com/tensorflow/tensorflow/issues/10827我正在检查 TF 使用的库(在 virtualenv 中):
% python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib() + "/python/_pywrap_tensorflow_internal.so")' | xargs ldd
linux-vdso.so.1 (0x00007fff57eb8000)
libtensorflow_framework.so => /home/mark/projects/bench/venvs/ve_tf/lib/python3.6/site-packages/tensorflow/python/../libtensorflow_framework.so (0x00007ff29fa25000)
libcublas.so.9.0 => /usr/local/cuda-9.0/lib64/libcublas.so.9.0 (0x00007ff29bda8000)
libcusolver.so.9.0 => /usr/local/cuda-9.0/lib64/libcusolver.so.9.0 (0x00007ff2971ad000)
libcudart.so.9.0 => /usr/local/cuda-9.0/lib64/libcudart.so.9.0 (0x00007ff296f40000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007ff296d3c000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007ff296b1f000)
libgomp.so.1 => /usr/lib/x86_64-linux-gnu/libgomp.so.1 (0x00007ff2968f2000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007ff2965ee000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007ff2963e6000)
libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007ff296064000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007ff295e4d000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007ff295aae000)
/lib64/ld-linux-x86-64.so.2 (0x00007ff2cb7c7000)
libcuda.so.1 => /usr/lib/x86_64-linux-gnu/libcuda.so.1 (0x00007ff294f0e000)
libcudnn.so.7 => /usr/local/cuda-9.0/lib64/libcudnn.so.7 (0x00007ff282bd5000)
libcufft.so.9.0 => /usr/local/cuda-9.0/lib64/libcufft.so.9.0 (0x00007ff27ab34000)
libcurand.so.9.0 => /usr/local/cuda-9.0/lib64/libcurand.so.9.0 (0x00007ff276bd0000)
libnvidia-fatbinaryloader.so.390.77 => /usr/lib/x86_64-linux-gnu/libnvidia-fatbinaryloader.so.390.77 (0x00007ff276984000)
Run Code Online (Sandbox Code Playgroud)
libcudnn.so
然而,似乎指向正确的图书馆,因为libcuda.so
我有疑问:
libcuda.so.1 => /usr/lib/x86_64-linux-gnu/libcuda.so.1 (0x00007ff294f0e000)
% readlink -f /usr/lib/x86_64-linux-gnu/libcuda.so.1
/usr/lib/x86_64-linux-gnu/libcuda.so.390.77
Run Code Online (Sandbox Code Playgroud)
好的,所以它显然导致了 NVIDIA 设备驱动程序使用/提供的 CUDA 库......
这是正常的吗?如果它不使用libcuda.so
的/usr/local/cuda-9.0
?
我有一个:/usr/local/cuda-9.0/lib64/stubs/libcuda.so
。
是的,这很正常。
在libcuda
使用绝对应该由GPU驱动程序提供(安装)之一。它绝对不应该是stubs
目录中的那个。
在一个stubs
目录(或任何/usr/local/cuda...
路径)是有不同的目的,基本上具有应用建设做在某些情况下,不运行任何应用程序。
对于正在运行的应用程序(如 Tensorflow),有必要使用驱动程序提供的共享对象,用于libcuda
库。
(该libcuda.so
在stubs
目录中规定的,你有一个CUDA工具包安装,但没有安装GPU驱动程序的情况下,和你想建立的GPU应用程序,但不能运行他们,当然,这样的情况可能存在于一个头节点/登录例如计算集群中的节点。在这种情况下,登录节点/构建节点可能没有安装 GPU,但您可能仍然想构建 CUDA驱动程序 API应用程序。此类应用程序需要针对驱动程序 API 库构建 ie 链接,并且该库由 提供libcuda.so
。因此,对于这种情况,提供了一个“存根”库。“存根”库具有 API 链接过程所需的一切,但在其他方面不起作用。)
归档时间: |
|
查看次数: |
1524 次 |
最近记录: |