Ray*_* Ck 3 python opencv computer-vision opencv-contour
我在图像中有对象集合。在此处检查样本输入图像。
我想找到每个对象的轮廓。我正在按照以下方法使用OpenCV2识别轮廓
gray = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
edged = cv2.Canny(gray, 50, 100)
dilate= cv2.dilate(edged, None, iterations=1)
erode= cv2.erode(dilate, None, iterations=1)
cnts = cv2.findContours(erode, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
Run Code Online (Sandbox Code Playgroud)
这是上面代码的轮廓输出:请参见输出图像
有没有更好的方法来识别图像中的对象?
您错过了代码段中的简单步骤,cv2.findContours()对二进制图像效果最佳,但是您只是将灰度图像传递给cv2.findContours。我已按照以下步骤从背景中分离出苹果:
您可以在此处使用HSV色域,其中较低的饱和度值会将背景分割为:
img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV_FULL)
# Filter out low saturation values, which means gray-scale pixels(majorly in background)
bgd_mask = cv2.inRange(img_hsv, np.array([0, 0, 0]), np.array([255, 30, 255]))
Run Code Online (Sandbox Code Playgroud)
# Get a mask for pitch black pixel values
black_pixels_mask = cv2.inRange(img_bgr, np.array([0, 0, 0]), np.array([70, 70, 70]))
# Get the mask for extreme white pixels.
white_pixels_mask = cv2.inRange(img_bgr, np.array([230, 230, 230]), np.array([255, 255, 255]))
Run Code Online (Sandbox Code Playgroud)
cv2.findContours:final_mask = cv2.max(bgd_mask, black_pixels_mask)
final_mask = cv2.min(final_mask, ~white_pixels_mask)
final_mask = ~final_mask
Run Code Online (Sandbox Code Playgroud)
final_mask = cv2.erode(final_mask, np.ones((3, 3), dtype=np.uint8))
final_mask = cv2.dilate(final_mask, np.ones((5, 5), dtype=np.uint8))
Run Code Online (Sandbox Code Playgroud)
cv2.findContours()获取轮廓,并在区域上对其进行过滤以删除较小的轮廓:# Now you can finally find contours.
im, contours, hierarchy = cv2.findContours(final_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
final_contours = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 2000:
final_contours.append(contour)
Run Code Online (Sandbox Code Playgroud)
这是完整的代码段:
import cv2
import numpy as np
img_bgr = cv2.imread("/home/anmol/Downloads/tWuTW.jpg")
img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV_FULL)
# Filter out low saturation values, which means gray-scale pixels(majorly in background)
bgd_mask = cv2.inRange(img_hsv, np.array([0, 0, 0]), np.array([255, 30, 255]))
# Get a mask for pitch black pixel values
black_pixels_mask = cv2.inRange(img_bgr, np.array([0, 0, 0]), np.array([70, 70, 70]))
# Get the mask for extreme white pixels.
white_pixels_mask = cv2.inRange(img_bgr, np.array([230, 230, 230]), np.array([255, 255, 255]))
final_mask = cv2.max(bgd_mask, black_pixels_mask)
final_mask = cv2.min(final_mask, ~white_pixels_mask)
final_mask = ~final_mask
final_mask = cv2.erode(final_mask, np.ones((3, 3), dtype=np.uint8))
final_mask = cv2.dilate(final_mask, np.ones((5, 5), dtype=np.uint8))
# Now you can finally find contours.
im, contours, hierarchy = cv2.findContours(final_mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
final_contours = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 2000:
final_contours.append(contour)
for i in xrange(len(final_contours)):
img_bgr = cv2.drawContours(img_bgr, final_contours, i, np.array([50, 250, 50]), 4)
debug_img = img_bgr
debug_img = cv2.resize(debug_img, None, fx=0.3, fy=0.3)
cv2.imwrite("./out.png", debug_img)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1324 次 |
| 最近记录: |