Shl*_*rtz 7 python numpy machine-learning dataset pandas
使用以下数据框,只有2个可能的标签:
name f1 f2 label
0 A 8 9 1
1 A 5 3 1
2 B 8 9 0
3 C 9 2 0
4 C 8 1 0
5 C 9 1 0
6 D 2 1 0
7 D 9 7 0
8 D 3 1 0
9 E 5 1 1
10 E 3 6 1
11 E 7 1 1
Run Code Online (Sandbox Code Playgroud)
我编写了一个代码,通过'name'列对数据进行分组,并将结果转换为numpy数组,因此每一行都是特定组的所有样本的集合,而标签是另一个numpy数组:
数据:
[[8 9] [5 3] [0 0]] # A lable = 1
[[8 9] [0 0] [0 0]] # B lable = 0
[[9 2] [8 1] [9 1]] # C lable = 0
[[2 1] [9 7] [3 1]] # D lable = 0
[[5 1] [3 6] [7 1]] # E lable = 1
Run Code Online (Sandbox Code Playgroud)
标贴:
[[1]
[0]
[0]
[0]
[1]]
Run Code Online (Sandbox Code Playgroud)
码:
import pandas as pd
import numpy as np
def prepare_data(group_name):
df = pd.read_csv("../data/tmp.csv")
group_index = df.groupby(group_name).cumcount()
data = (df.set_index([group_name, group_index])
.unstack(fill_value=0).stack())
target = np.array(data['label'].groupby(level=0).apply(lambda x: [x.values[0]]).tolist())
data = data.loc[:, data.columns != 'label']
data = np.array(data.groupby(level=0).apply(lambda x: x.values.tolist()).tolist())
print(data)
print(target)
prepare_data('name')
Run Code Online (Sandbox Code Playgroud)
我想从过度代表的类中重新采样和删除实例.
即
[[8 9] [5 3] [0 0]] # A lable = 1
[[8 9] [0 0] [0 0]] # B lable = 0
[[9 2] [8 1] [9 1]] # C lable = 0
# group D was deleted randomly from the '0' labels
[[5 1] [3 6] [7 1]] # E lable = 1
Run Code Online (Sandbox Code Playgroud)
这将是一个可接受的解决方案,因为删除D(标记为'0')将产生2*标签'1'和2*标签'0'的平衡数据集.
一个非常简单的方法。取自 sklearn 文档和 Kaggle。
from sklearn.utils import resample
df_majority = df[df.label==0]
df_minority = df[df.label==1]
# Upsample minority class
df_minority_upsampled = resample(df_minority,
replace=True, # sample with replacement
n_samples=20, # to match majority class
random_state=42) # reproducible results
# Combine majority class with upsampled minority class
df_upsampled = pd.concat([df_majority, df_minority_upsampled])
# Display new class counts
df_upsampled.label.value_counts()
Run Code Online (Sandbox Code Playgroud)
如果每个都name被精确地标记为 1 label(例如全部A都是1),您可以使用以下内容:
name将s分组label并检查哪个标签有多余的内容(就唯一名称而言)。这是代码:
labels = df.groupby('label').name.unique()
# Sort the over-represented class to the head.
labels = labels[labels.apply(len).sort_values(ascending=False).index]
excess = len(labels.iloc[0]) - len(labels.iloc[1])
remove = np.random.choice(labels.iloc[0], excess, replace=False)
df2 = df[~df.name.isin(remove)]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1603 次 |
| 最近记录: |