如何从 MultiOutputRegressor 获取系数和特征重要性?

Jul*_*era 5 python machine-learning scikit-learn

我正在尝试使用 ElasticNet 和随机森林执行多输出回归,如下所示:

from sklearn.ensemble import RandomForestRegressor
from sklearn.multioutput import MultiOutputRegressor
from sklearn.linear_model import ElasticNet

X_train, X_test, y_train, y_test = train_test_split(X_features, y, test_size=0.30,random_state=0)
Run Code Online (Sandbox Code Playgroud)

弹性网

l1_range=np.arange(0.1,1.05,0.1).tolist()

regr_Enet=ElasticNetCV(cv=5,copy_X=True,n_alphas=100,l1_ratio=l1_range,selection='cyclic',normalize=False,verbose =2,n_jobs=1)

regr_multi_Enet= MultiOutputRegressor(regr_Enet)##ElasticNetCV

regr_multi_Enet.fit(X_train, y_train)
Run Code Online (Sandbox Code Playgroud)

随机森林

max_depth = 20
number_of_trees=100

regr_multi_RF=MultiOutputRegressor(RandomForestRegressor(n_estimators=number_of_trees,max_depth=max_depth,random_state=0,n_jobs=1,verbose=1))

regr_multi_RF.fit(X_train, y_train)

y_multirf = regr_multi_RF.predict(X_test)
Run Code Online (Sandbox Code Playgroud)

一切都很顺利,但是我还没有找到一种方法来获得模型的系数 (coef_) 或最重要的特征 (feature_importances_)。当我写:

regr_multi_Enet.coef_
regr_multi_RF.feature_importances_
Run Code Online (Sandbox Code Playgroud)

它显示以下错误:

AttributeError: 'MultiOutputRegressor' object has no attribute 'feature_importances_'
AttributeError: 'MultiOutputRegressor' object has no attribute 'coef_'
Run Code Online (Sandbox Code Playgroud)

我已阅读有关 MultiOutputRegressor 的文档,但找不到提取系数的方法。有谁知道如何找回它们?

des*_*aut 6

MultiOutputRegressor 本身没有这些属性 - 您需要首先使用该estimators_属性访问底层估计器(虽然文档中没有提到它,但它确实存在 - 请参阅MultiOutputClassifier的文档)。这是一个可重现的示例:

from sklearn.multioutput import MultiOutputRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import ElasticNet

# dummy data
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
W = np.array([[1, 1], [1, 1], [2, 2], [2, 2]])

regr_multi_RF=MultiOutputRegressor(RandomForestRegressor())
regr_multi_RF.fit(X,W)

# how many estimators?
len(regr_multi_RF.estimators_)
# 2

regr_multi_RF.estimators_[0].feature_importances_
# array([ 0.4,  0.6])

regr_multi_RF.estimators_[1].feature_importances_
# array([ 0.4,  0.4])

regr_Enet = ElasticNet()
regr_multi_Enet= MultiOutputRegressor(regr_Enet)
regr_multi_Enet.fit(X, W)

regr_multi_Enet.estimators_[0].coef_
# array([ 0.08333333,  0.        ])

regr_multi_Enet.estimators_[1].coef_
# array([ 0.08333333,  0.        ])
Run Code Online (Sandbox Code Playgroud)