具有交叉熵的像素方式 ​​softmax 用于多类分割

Sri*_*adi 5 machine-learning computer-vision deep-learning keras tensorflow

我正在尝试使用 2 个类(人类、汽车)实现多类语义分割模型。这是我对 unet 架构的修改实现。I 输出通道数为 3(3 类 - 人类、汽车、背景)。我如何获得像素明智的分类?这是我的地面实况面具中的两个例子。

我为每个对象类使用 1 个通道,即。

  • class=car 的频道 1
  • class=background 的通道 2
  • 频道 3 for class=human

1级 2级

def conv_block(tensor, nfilters, size=3, padding='same', initializer="he_normal"):
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(tensor)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    x = Conv2D(filters=nfilters, kernel_size=(size, size), padding=padding, kernel_initializer=initializer)(x)
    x = BatchNormalization()(x)
    x = Activation("relu")(x)
    return x


def deconv_block(tensor, residual, nfilters, size=3, padding='same', strides=(2, 2)):
    y = Conv2DTranspose(nfilters, kernel_size=(size, size), strides=strides, padding=padding)(tensor)
    y = concatenate([y, residual], axis=3)
    y = conv_block(y, nfilters)
    return y

def Unet(img_height, img_width, nclasses=3, filters=64):
    input_layer = Input(shape=(img_height, img_width, 3), name='image_input')
    conv1 = conv_block(input_layer, nfilters=filters)
    conv1_out = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = conv_block(conv1_out, nfilters=filters*2)
    conv2_out = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = conv_block(conv2_out, nfilters=filters*4)
    conv3_out = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = conv_block(conv3_out, nfilters=filters*8)
    conv4_out = MaxPooling2D(pool_size=(2, 2))(conv4)
    conv4_out = Dropout(0.5)(conv4_out)
    conv5 = conv_block(conv4_out, nfilters=filters*16)
    conv5 = Dropout(0.5)(conv5)

    deconv6 = deconv_block(conv5, residual=conv4, nfilters=filters*8)
    deconv6 = Dropout(0.5)(deconv6)
    deconv7 = deconv_block(deconv6, residual=conv3, nfilters=filters*4)
    deconv7 = Dropout(0.5)(deconv7) 
    deconv8 = deconv_block(deconv7, residual=conv2, nfilters=filters*2)
    deconv9 = deconv_block(deconv8, residual=conv1, nfilters=filters)

    output_layer = Conv2D(filters=nclasses, kernel_size=(1, 1))(deconv9)
    output_layer = BatchNormalization()(output_layer)
    output_layer = Reshape((img_height*img_width, nclasses), input_shape=(img_height, img_width, nclasses))(output_layer)
    output_layer = Activation('softmax')(output_layer)

    model = Model(inputs=input_layer, outputs=output_layer, name='Unet')
    return model
Run Code Online (Sandbox Code Playgroud)

Ali*_*asi 1

您快完成了,现在使用以下命令反向传播网络错误:

loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output_layer, labels=labels))   
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) 
Run Code Online (Sandbox Code Playgroud)

您不必将基本事实转换为 one-hot 格式,sparse_softmax 会为您打点。