Att*_*k68 9 python multi-index pandas
我有一个多索引数据帧:
import pandas as pd
import numpy as np
l0, l1 = ['A', 'B'],['a', 'b']
c0 = ['c1', 'c2', 'c3']
data = np.arange(12).reshape(4,3)
df = pd.DataFrame(data=data,
index=pd.MultiIndex.from_product([l0,l1]),
columns=c0)
>>>
c1 c2 c3
A a 0 1 2
b 3 4 5
B a 6 7 8
b 9 10 11
Run Code Online (Sandbox Code Playgroud)
我想转置 MultiIndex 和列的级别,以便得到:
df2 = pd.DataFrame(index=pd.MultiIndex.from_product([l0, c0]),
columns=l1)
>>>
a b
A c1 NaN NaN
c2 NaN NaN
c3 NaN NaN
B c1 NaN NaN
c2 NaN NaN
c3 NaN NaN
Run Code Online (Sandbox Code Playgroud)
显然我想填充正确的值。我的解决方案目前是将 map 与迭代器一起使用,但感觉 Pandas 会有一些本机方式来做到这一点。我是对的,有更好(更快)的方法吗?
from itertools import product
def f(df, df2, idx_1, col_0):
df2.loc[(slice(None), col_0), idx_1] = \
df.loc[(slice(None), idx_1), col_0].values
m = map(lambda k: f(df, df2, k[0], k[1]), product(l1, c0))
list(m) # <- to execute
>>> df2
>>>
a b
A c1 0 3
c2 1 4
c3 2 5
B c1 6 9
c2 7 10
c3 8 11
Run Code Online (Sandbox Code Playgroud)
ayh*_*han 16
首先堆叠列,然后将要成为新列的级别拆开:
df.stack().unstack(level=1)
Out:
a b
A c1 0 3
c2 1 4
c3 2 5
B c1 6 9
c2 7 10
c3 8 11
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3427 次 |
| 最近记录: |