import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = tf.keras.utils.normalize(x_train, axis=1)
x_test = tf.keras.utils.normalize(x_test, axis=1)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10,activation=tf.nn.softmax))
model.compile(optimizer ='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=3)
Run Code Online (Sandbox Code Playgroud)
当我试图保存模型时
model.save('epic_num_reader.model')
Run Code Online (Sandbox Code Playgroud)
我得到一个NotImplementedError:
NotImplementedError Traceback (most recent call last)
<ipython-input-4-99efa4bdc06e> in <module>()
1
----> 2 model.save('epic_num_reader.model')
NotImplementedError: Currently `save` requires model to be a graph network. Consider using `save_weights`, in order to save the weights of the model.
Run Code Online (Sandbox Code Playgroud)
那么如何保存代码中定义的模型呢?
Mat*_*gro 12
您忘记了input_shape第一层定义中的参数,这使得模型未定义,并且尚未实现保存未定义模型,这会触发错误.
model.add(tf.keras.layers.Flatten(input_shape = (my, input, shape)))
Run Code Online (Sandbox Code Playgroud)
只需添加input_shape到第一层,它应该工作正常.
| 归档时间: |
|
| 查看次数: |
5713 次 |
| 最近记录: |