我想根据计数过滤n个最大的组,然后对过滤的数据帧进行一些计算
这是一些数据
Brand <- c("A","B","C","A","A","B","A","A","B","C")
Category <- c(1,2,1,1,2,1,2,1,2,1)
Clicks <- c(10,11,12,13,14,15,14,13,12,11)
df <- data.frame(Brand,Category,Clicks)
|Brand | Category| Clicks|
|:-----|--------:|------:|
|A | 1| 10|
|B | 2| 11|
|C | 1| 12|
|A | 1| 13|
|A | 2| 14|
|B | 1| 15|
|A | 2| 14|
|A | 1| 13|
|B | 2| 12|
|C | 1| 11|
Run Code Online (Sandbox Code Playgroud)
这是我的预期输出.我想按计数过滤掉两个最大的品牌,然后找出每个品牌/类别组合的平均点击次数
|Brand | Category| mean_clicks|
|:-----|--------:|-----------:|
|A | 1| 12.0|
|A | 2| 14.0|
|B | 1| 15.0|
|B | 2| 11.5|
Run Code Online (Sandbox Code Playgroud)
我认为可以用这样的代码实现(但不能)
df %>%
group_by(Brand, Category) %>%
top_n(2, Brand) %>% # Largest 2 brands by count
summarise(mean_clicks = mean(Clicks))
Run Code Online (Sandbox Code Playgroud)
编辑:理想的答案应该能够用于数据库表和本地表
另一种dplyr
使用join
过滤数据帧的解决方案:
library(dplyr)
df %>%
group_by(Brand) %>%
summarise(n = n()) %>%
top_n(2) %>% # select top 2
left_join(df, by = "Brand") %>% # filters out top 2 Brands
group_by(Brand, Category) %>%
summarise(mean_clicks = mean(Clicks))
# # A tibble: 4 x 3
# # Groups: Brand [?]
# Brand Category mean_clicks
# <fct> <dbl> <dbl>
# 1 A 1 12
# 2 A 2 14
# 3 B 1 15
# 4 B 2 11.5
Run Code Online (Sandbox Code Playgroud)