sha*_*oss 5 python keras tensorflow
让\xe2\x80\x99s 考虑一个包含 6 列和 10 行的示例数据集。
\n\n这 3 列是数字,其余 3 列是分类变量。
\n\n分类列被转换为大小为 10x3 的多热编码数组。
\n\n我有目标列,我想要预测它也是分类变量,它可以再次采用 3 个可能的值。这一列是一个热门编码。
\n\n现在我想使用这个多重热编码数组作为嵌入层的输入。嵌入层应输出 2 个单位。
\n\n然后我想使用数据集中的 3 个数字列和嵌入层的 2 个输出单元,总共 5 个单元作为隐藏层的输入。
\n\n这就是我被卡住的地方。我不知道如何使用tensorflow keras桥接嵌入层和其他特征列,我也不知道如何传递嵌入层和其他2个单元的输入。
\n\n我已经用谷歌搜索过了。我尝试了以下代码,但仍然出现错误。\n我猜 tf.keras 包中没有 Merge 层。
\n\n对此的任何帮助将不胜感激。
\n\n import tensorflow as tf\n from tensorflow import keras\n import numpy as np\n\n num_data = np.random.random(size=(10,3))\n multi_hot_encode_data = np.random.randint(0,2, 30).reshape(10,3)\n target = np.eye(3)[np.random.randint(0,3, 10)]\n\n model = keras.Sequential()\n model.add(keras.layers.Embedding(input_dim=multi_hot_encode_data.shape[1], output_dim=2))\n model.add(keras.layers.Dense(3, activation=tf.nn.relu, input_shape=(num_data.shape[1],)))\n model.add(keras.layers.Dense(3, activation=tf.nn.softmax)\n\n model.compile(optimizer=tf.train.RMSPropOptimizer(0.01),\n loss=keras.losses.categorical_crossentropy,\n metrics=[keras.metrics.categorical_accuracy])\n\n #model.fit([multi_hot_encode_data, num_data], target) # I get error here \n
Run Code Online (Sandbox Code Playgroud)\n\n我的网络结构将是
\n\n multi-hot-encode-input num_data_input \n | |\n | |\n | |\n embedding_layer |\n | |\n | | \n \\ / \n \\ / \n dense_hidden_layer\n | \n | \n output_layer \n
Run Code Online (Sandbox Code Playgroud)\n
这种“合并”模式与顺序模型不兼容。我认为使用功能性 keras API 更容易keras.Model
(keras.Sequential
主要差异的简短解释):
import tensorflow as tf
from tensorflow import keras
import numpy as np
num_data = np.random.random(size=(10,3))
multi_hot_encode_data = np.random.randint(0,2, 30).reshape(10,3)
target = np.eye(3)[np.random.randint(0,3, 10)]
# Use Input layers, specify input shape (dimensions except first)
inp_multi_hot = keras.layers.Input(shape=(multi_hot_encode_data.shape[1],))
inp_num_data = keras.layers.Input(shape=(num_data.shape[1],))
# Bind nulti_hot to embedding layer
emb = keras.layers.Embedding(input_dim=multi_hot_encode_data.shape[1], output_dim=2)(inp_multi_hot)
# Also you need flatten embedded output of shape (?,3,2) to (?, 6) -
# otherwise it's not possible to concatenate it with inp_num_data
flatten = keras.layers.Flatten()(emb)
# Concatenate two layers
conc = keras.layers.Concatenate()([flatten, inp_num_data])
dense1 = keras.layers.Dense(3, activation=tf.nn.relu, )(conc)
# Creating output layer
out = keras.layers.Dense(3, activation=tf.nn.softmax)(dense1)
model = keras.Model(inputs=[inp_multi_hot, inp_num_data], outputs=out)
model.compile(optimizer=tf.train.RMSPropOptimizer(0.01),
loss=keras.losses.categorical_crossentropy,
metrics=[keras.metrics.categorical_accuracy])
Run Code Online (Sandbox Code Playgroud)
输出model.summary
:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_5 (InputLayer) (None, 3) 0
__________________________________________________________________________________________________
embedding_2 (Embedding) (None, 3, 2) 6 input_5[0][0]
__________________________________________________________________________________________________
flatten (Flatten) (None, 6) 0 embedding_2[0][0]
__________________________________________________________________________________________________
input_6 (InputLayer) (None, 3) 0
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, 9) 0 flatten[0][0]
input_6[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 3) 30 concatenate_2[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 3) 12 dense[0][0]
==================================================================================================
Total params: 48
Trainable params: 48
Non-trainable params: 0
__________________________________________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
此外,它也成功适配:
model.fit([multi_hot_encode_data, num_data], target)
Epoch 1/1
10/10 [==============================] - 0s 34ms/step - loss: 1.0623 - categorical_accuracy: 0.3000
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
4565 次 |
最近记录: |