熊猫箱数据框

PEB*_*KAC 4 python pandas

我有一个带有0.1 m网格的深度列的数据框。

import pandas as pd


df1 = pd.DataFrame({'depth': [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1 ],
            '350': [7.898167, 6.912074, 6.049002, 5.000357, 4.072320, 3.070662, 2.560458, 2.218879, 1.892131, 1.588389, 1.573693],
            '351': [8.094912, 7.090584, 6.221289, 5.154516, 4.211746, 3.217615, 2.670147, 2.305846, 1.952723, 1.641423, 1.622722],
            '352': [8.291657, 7.269095, 6.393576, 5.308674, 4.351173, 3.364569, 2.779837, 2.392813, 2.013316, 1.694456, 1.671752],
            '353': [8.421007, 7.374317, 6.496641, 5.403691, 4.439815, 3.412494, 2.840625, 2.443868, 2.069017, 1.748445, 1.718081 ],
            '354': [8.535562, 7.463452, 6.584512, 5.485725, 4.517310, 3.438680, 2.890678, 2.487039, 2.123644, 1.802643, 1.763818 ],
            '355': [8.650118, 7.552586, 6.672383, 4.517310, 4.594806, 3.464867, 2.940732, 2.530211, 2.178271, 1.856841, 1.809555 ]},
            index=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
             )
Run Code Online (Sandbox Code Playgroud)

我的问题是:如何对数据进行装箱以在0.5 m的深度频率上获得新的数据帧?

还是更确切地说,对于dz = 0.5 m箱,我如何平均df1的列值(每0.1 m有数据)?

关键是要获得相同的df结构,相同的列(350-355),但应在一定的dz间隔(行数)下,将行平均/合并为每列,例如0.5 m

因此,在这种情况下,我的新数据框将只有两行,深度值分别为1.35和1.85 m,每一列都保持在df1中。第一个具有1.1-1.6m区间的平均值,第二个具有1.6-2.1m的平均值。

geh*_*eis 5

结合使用df.groupbypd.cut

import pandas as pd
import numpy as np

# Specifiy your desired dz step size
step = 0.5
dz = np.arange(1,3,step)

# rebin dataframe
df2 = df1.groupby(pd.cut(df1.depth, dz, labels=False), as_index=False).mean()

# refill 'depth' column
df2.depth = dz[:-1]
Run Code Online (Sandbox Code Playgroud)

depth   350     351     352     353     354     355
0   1.0     5.986384    6.154609    6.322835    6.427094    6.517312    6.397441
1   1.5     2.266104    2.357551    2.448998    2.502890    2.548537    2.594184
2   2.0     1.573693    1.622722    1.671752    1.718081    1.763818    1.809555
Run Code Online (Sandbox Code Playgroud)

其中每行有均值的35x内柱1 < x <= 1.51.5 < x <= 2等...

您可以通过为step变量选择所需的值来轻松更改重新绑定。

  • @PEBKAC:那不是`dz = np.arange(df1.depth.min(),df1.depth.max(),step)`吗? (2认同)