我可以在C++中扩展变体吗?

Seb*_*ian 9 c++ templates template-meta-programming c++17

我不确定这是可能的,但我说:

using my_variant = std::variant<Class1, Class2, Class3>;

现在,在某些时候,我创建了一个Class4,想扩大my_variant2到包括所有的my_variant沿Class4(在一般的方式,即不只是用另一种using...),所以我可以做一些像创建一个数组std::array<my_variant2, n>.

这是可以做到的吗?

Fra*_*eux 10

实现这一目标有两个步骤.第一个是识别原始类型中使用的类型列表,std::variant第二个是std::variant使用原始参数和要添加的类型构造新类型.

部分模板特化可用于编写特征,该特征将获取给定的模板类型列表std::variant:

#include <variant>

template<class T>
struct t_variant_cat;

template<class ... Old>
struct t_variant_cat<std::variant<Old...>> {
    // Old is a parameter pack containing all of 
    //  template arguments of the std::variant
};
Run Code Online (Sandbox Code Playgroud)

接下来,我们添加另一个模板参数,该参数指定要添加的类型并为此新类型定义别名.

#include <variant>

template<class T, class New>
struct t_variant_cat;

template<class ... Old, class New>
struct t_variant_cat<std::variant<Old...>, New> {
    using type = std::variant<Old..., New>;
};
Run Code Online (Sandbox Code Playgroud)

typename t_variant_cat<my_variant, Class4>::type现在应该屈服 std::variant<Class1, Class2, Class3, Class4>.为方便起见,我们可以添加一个类型别名,以避免必须写入typename::type每次:

template<class Old, class New>
using t_variant_cat_t = typename t_variant_cat<Old, New>::type;
Run Code Online (Sandbox Code Playgroud)

用法是:

#include <variant>

template<class T, class New>
struct t_variant_cat;

template<class ... Old, class New>
struct t_variant_cat<std::variant<Old...>, New> {
    using type = std::variant<Old..., New>;
};

template<class Old, class New>
using t_variant_cat_t = typename t_variant_cat<Old, New>::type;

using old = std::variant<int, float>;
using extended = t_variant_cat_t<old, double>;

// Makes sure this actually works
static_assert(std::is_same_v<extended, std::variant<int, float, double>>,
    "Something is wrong.");
Run Code Online (Sandbox Code Playgroud)

  • @bobah感谢您的反馈.我会做出改变. (2认同)

Yak*_*ont 7

namespace impl_details {
  template<class Var, class...Ts>
  struct extend_type;
  template<template<class...>class Z, class...Vs, class...Ts>
  struct extend_type<Z<Vs...>, Ts...> {
    using type=Z<Vs..., Ts...>;
  };
}
template<class Var, class...Ts>
using extend_type = typename impl_details::extend_type<Var, Ts...>::type;
Run Code Online (Sandbox Code Playgroud)

现在

extend_type<my_variant, Class4>
Run Code Online (Sandbox Code Playgroud)

std::variant<Class1, Class2, Class3, Class4>
Run Code Online (Sandbox Code Playgroud)

虽然我不同意你的基于1的索引.

extend_type< std::tuple<a,b,c>, d, e, f > 也有效.

我可以用这个来玩得开心......

namespace impl_details {
  template<class Lhs, class Rhs>
  struct type_cat;
  template<template<class...>class Z, class...Lhs, class...Rhs>
  struct type_cat<Z<Lhs...>, Z<Rhs...>> {
    using type=Z<Lhs..., Rhs...>;
  };
}
template<class Lhs, class Rhs>
using type_cat = typename impl_details::type_cat<Lhs, Rhs>::type;


auto variant_trinary( bool b ) {
  return [b](auto&& lhs, auto&& rhs) {
    using R=type_cat< std::decay_t<decltype(lhs)>, std::decay_t<decltype(rhs)> >;
    auto as_R = [](auto&&x)->R{ return decltype(x)(x)); };
    if (b)
      return std::visit( as_R, lhs );
    else
      return std::visit( as_R, rhs );
  };
}
Run Code Online (Sandbox Code Playgroud)

这给了我们两个变体的三元运算符.

auto var = variant_trinary(bool_expr)( var1, var2 );
Run Code Online (Sandbox Code Playgroud)

这里var是变异类型的concatination var1var2.


bob*_*bah 6

godbolted

#include <variant>

template <typename T, typename... Args> struct concatenator;

template <typename... Args0, typename... Args1>
struct concatenator<std::variant<Args0...>, Args1...> {
    using type = std::variant<Args0..., Args1...>;
};

int main() {
    using type_t = std::variant<int, char, double>;
    static_assert(
        std::is_same_v<
            concatenator<type_t, float, short>::type,
            std::variant<int, char, double, float, short>>);
    return 0;
}
Run Code Online (Sandbox Code Playgroud)