多类分类问题中的不平衡类

wie*_*eus 10 machine-learning neural-network deep-learning keras tensorflow

我正在尝试使用 TensorFlow 的 DNNClassifier 来解决我的 4 个不同类的多类(softmax)分类问题。我有一个具有以下分布的不平衡数据集:

  • 0 级:14.8%
  • 第一类:35.2%
  • 2 类:27.8%
  • 第 3 类:22.2%

如何weight_column为每个类的 DNNClassifier 分配权重?我知道如何对此进行编码,但我想知道我应该为每个类提供什么值。

Mar*_*ani 5

有多种选项可以为联合国不平衡分类问题建立权重。最常见的方法之一是直接使用训练中的类计数来估计样本权重。这个选项很容易由sklearn计算出来。“平衡”模式使用 y 的值来自动调整与类别频率成反比的权重。

在下面的示例中,我们尝试做的是“合并”该compute_sample_weight方法来拟合我们的 DNNClassifier。作为标签分布,我使用了问题中表达的相同内容

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.utils.class_weight import compute_sample_weight

train_size = 1000
test_size = 200
columns = 30

## create train data
y_train = np.random.choice([0,1,2,3], train_size, p=[0.15, 0.35, 0.28, 0.22])
x_train = pd.DataFrame(np.random.uniform(0,1, (train_size,columns)).astype('float32'))
x_train.columns = [str(i) for i in range(columns)]

## create train weights
weight = compute_sample_weight(class_weight='balanced', y=y_train)
x_train['weight'] = weight.astype('float32')

## create test data
y_test = np.random.choice([0,1,2,3], test_size, p=[0.15, 0.35, 0.28, 0.22])
x_test = pd.DataFrame(np.random.uniform(0,1, (test_size,columns)).astype('float32'))
x_test.columns = [str(i) for i in range(columns)]

## create test weights
x_test['weight'] = np.ones(len(y_test)).astype('float32') ## set them all to 1

## utility functions to pass data to DNNClassifier
def train_input_fn():
    dataset = tf.data.Dataset.from_tensor_slices((dict(x_train), y_train))
    dataset = dataset.shuffle(1000).repeat().batch(10)
    return dataset

def eval_input_fn():
    dataset = tf.data.Dataset.from_tensor_slices((dict(x_test), y_test))
    return dataset.shuffle(1000).repeat().batch(10)

## define DNNClassifier
classifier = tf.estimator.DNNClassifier(
    feature_columns=[tf.feature_column.numeric_column(str(i), shape=[1]) for i in range(columns)],
    weight_column = tf.feature_column.numeric_column('weight'),
    hidden_units=[10],
    n_classes=4,
)

## train DNNClassifier
classifier.train(input_fn=lambda: train_input_fn(), steps=100)

## make evaluation
eval_results = classifier.evaluate(input_fn=eval_input_fn, steps=1)
Run Code Online (Sandbox Code Playgroud)

考虑到我们的权重是作为目标的函数构建的,我们必须在测试数据中将它们设置为 1,因为标签未知。


Fel*_*xHo 1

您可以尝试以下公式来平衡所有类别:

weight_for_class_X = total_samples_size / size_of_class_X / num_classes
Run Code Online (Sandbox Code Playgroud)

例如:

num_CLASS_0: 10000   
num_CLASS_1: 1000
num_CLASS_2: 100

wgt_for_0 = 11100 / 10000 / 3 = 0.37  
wgt_for_1 = 11100 / 1000 / 3 = 3.7
wgt_for_2 = 11100 / 100 / 3 = 37

# so after one epoch training the total weights of each class will be:
total_wgt_of_0 = 0.37 * 10000 = 3700
total_wgt_of_1 = 3.7 * 1000 = 3700
total_wgt_of_2 = 37 * 100 = 3700
Run Code Online (Sandbox Code Playgroud)