如何解释 h2o.predict() 结果的概率 (p0, p1)

Dav*_*eal 5 r machine-learning glm deep-learning h2o

我想了解H2o R-package中h2o.predict()函数的值(结果)的含义。我意识到在某些情况下,当predict列是 时1p1列的值低于列p0。我对p0p1列的解释是指每个事件的概率,所以我预计predict=1的概率p1应该高于相反事件的概率 ( p0),但它并不总是发生,正如我在以下示例中所示:使用前列腺数据集

这是可执行示例:

library(h2o)
h2o.init(max_mem_size = "12g", nthreads = -1)
prostate.hex <- h2o.importFile("https://h2o-public-test-data.s3.amazonaws.com/smalldata/prostate/prostate.csv")
prostate.hex$CAPSULE  <- as.factor(prostate.hex$CAPSULE)
prostate.hex$RACE     <- as.factor(prostate.hex$RACE)
prostate.hex$DCAPS    <- as.factor(prostate.hex$DCAPS)
prostate.hex$DPROS    <- as.factor(prostate.hex$DPROS)

prostate.hex.split = h2o.splitFrame(data = prostate.hex,
  ratios = c(0.70, 0.20, 0.10), seed = 1234)
train.hex     <- prostate.hex.split[[1]]
validate.hex  <- prostate.hex.split[[2]]
test.hex      <- prostate.hex.split[[3]]

fit <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
  training_frame = train.hex,
  validation_frame = validate.hex,
  family = "binomial", nfolds = 0, alpha = 0.5)

prostate.predict = h2o.predict(object = fit, newdata = test.hex)
result <- as.data.frame(prostate.predict)
subset(result, predict == 1 & p1 < 0.4)
Run Code Online (Sandbox Code Playgroud)

我得到subset函数结果的以下输出:

   predict        p0        p1
11       1 0.6355974 0.3644026
17       1 0.6153021 0.3846979
23       1 0.6289063 0.3710937
25       1 0.6007919 0.3992081
31       1 0.6239587 0.3760413
Run Code Online (Sandbox Code Playgroud)

对于来自test.hex数据集的所有上述观察,预测为1,但是p0 > p1

总观测值 where predict=1butp1 < p0是:

>   nrow(subset(result, predict == 1 & p1 < p0))
[1] 14
Run Code Online (Sandbox Code Playgroud)

相反没有predict=0地方p0 < p1

>   nrow(subset(result, predict == 0 & p0 < p1))
[1] 0
Run Code Online (Sandbox Code Playgroud)

以下是有关table信息的表格predict

> table(result$predict)

 0  1 
18 23 
Run Code Online (Sandbox Code Playgroud)

我们使用CAPSULE以下值作为决策变量:

> levels(as.data.frame(prostate.hex)$CAPSULE)
[1] "0" "1"
Run Code Online (Sandbox Code Playgroud)

有什么建议吗?

注意:具有类似主题的问题:How to interpret results of h2o.predict并未解决此特定问题。

Dar*_*ook 5

您所描述的是 0.5 的阈值。事实上,将使用不同的阈值,使某个指标最大化的阈值。默认指标是 F1 (*);如果您打印模型信息,您可以找到用于每个指标的阈值。

看问题:如何通过h2o.performance了解H2OModelMetrics Object的metrics?有关更多信息(您的问题有所不同,这就是我没有将其标记为重复的原因)。

据我所知,您不能将 F1 默认值更改为h2o.predict()h2o.performance()。但是你可以使用h2o.confusionMatrix()

鉴于您的模型fit,并使用 max F2 代替:

h2o.confusionMatrix(fit, metrics = "f2")
Run Code Online (Sandbox Code Playgroud)

您也可以直接使用h2o.predict()具有您自己的阈值的“p0”列,而不是“预测”列。(这就是我之前所做的。)

*:定义在这里:https : //github.com/h2oai/h2o-3/blob/fdde85e41bad5f31b6b841b300ce23cfb2d8c0b0/h2o-core/src/main/java/hex/AUC2.java#L34 进一步向下该文件还显示了每个的指标被计算。


San*_*Dey 5

似乎(也请参阅此处F1 scorevalidation数据集上的最大化的阈值用作分类的默认阈值h2o.glm()。我们可以观察到以下几点:

  1. F1 score验证数据集上最大化的阈值为0.363477
  2. 预测p1概率小于此阈值的所有数据点都归类为0类(预测为类的数据点0p1概率最高= 0.3602365< 0.363477)。
  3. 预测p1概率大于此阈值的所有数据点都归类为1类(预测为类的数据点1p1概率最低= 0.3644026> 0.363477)。

    min(result[result$predict==1,]$p1)
    # [1] 0.3644026
    max(result[result$predict==0,]$p1)
    # [1] 0.3602365
    
    # Thresholds found by maximizing the metrics on the training dataset
    fit@model$training_metrics@metrics$max_criteria_and_metric_scores 
    #Maximum Metrics: Maximum metrics at their respective thresholds
    #                        metric threshold    value idx
    #1                       max f1  0.314699 0.641975 200
    #2                       max f2  0.215203 0.795148 262
    #3                 max f0point5  0.451965 0.669856  74
    #4                 max accuracy  0.451965 0.707581  74
    #5                max precision  0.998285 1.000000   0
    #6                   max recall  0.215203 1.000000 262
    #7              max specificity  0.998285 1.000000   0
    #8             max absolute_mcc  0.451965 0.395147  74
    #9   max min_per_class_accuracy  0.360174 0.652542 127
    #10 max mean_per_class_accuracy  0.391279 0.683269  97
    
    # Thresholds found by maximizing the metrics on the validation dataset
    fit@model$validation_metrics@metrics$max_criteria_and_metric_scores 
    #Maximum Metrics: Maximum metrics at their respective thresholds
    #                        metric threshold    value idx
    #1                       max f1  0.363477 0.607143  33
    #2                       max f2  0.292342 0.785714  51
    #3                 max f0point5  0.643382 0.725806   9
    #4                 max accuracy  0.643382 0.774194   9
    #5                max precision  0.985308 1.000000   0
    #6                   max recall  0.292342 1.000000  51
    #7              max specificity  0.985308 1.000000   0
    #8             max absolute_mcc  0.643382 0.499659   9
    #9   max min_per_class_accuracy  0.379602 0.650000  28
    #10 max mean_per_class_accuracy  0.618286 0.702273  11
    
    result[order(result$predict),]
    #   predict          p0        p1
    #5        0 0.703274569 0.2967254
    #6        0 0.639763460 0.3602365
    #13       0 0.689557497 0.3104425
    #14       0 0.656764541 0.3432355
    #15       0 0.696248328 0.3037517
    #16       0 0.707069611 0.2929304
    #18       0 0.692137408 0.3078626
    #19       0 0.701482762 0.2985172
    #20       0 0.705973644 0.2940264
    #21       0 0.701156961 0.2988430
    #22       0 0.671778898 0.3282211
    #24       0 0.646735016 0.3532650
    #26       0 0.646582708 0.3534173
    #27       0 0.690402957 0.3095970
    #32       0 0.649945017 0.3500550
    #37       0 0.804937468 0.1950625
    #40       0 0.717706731 0.2822933
    #41       0 0.642094040 0.3579060
    #1        1 0.364577068 0.6354229
    #2        1 0.503432724 0.4965673
    #3        1 0.406771233 0.5932288
    #4        1 0.551801718 0.4481983
    #7        1 0.339600779 0.6603992
    #8        1 0.002978593 0.9970214
    #9        1 0.378034417 0.6219656
    #10       1 0.596298925 0.4037011
    #11       1 0.635597359 0.3644026
    #12       1 0.552662241 0.4473378
    #17       1 0.615302107 0.3846979
    #23       1 0.628906297 0.3710937
    #25       1 0.600791894 0.3992081
    #28       1 0.216571552 0.7834284
    #29       1 0.559174924 0.4408251
    #30       1 0.489514642 0.5104854
    #31       1 0.623958696 0.3760413
    #33       1 0.504691497 0.4953085
    #34       1 0.582509462 0.4174905
    #35       1 0.504136056 0.4958639
    #36       1 0.463076505 0.5369235
    #38       1 0.510908093 0.4890919
    #39       1 0.469376828 0.5306232
    
    Run Code Online (Sandbox Code Playgroud)