我试图基于此表将两个ggplot2图合并为一个:
Type RatingA RatingB
1 One 3 36
2 Two 5 53
3 One 5 57
4 One 7 74
5 Three 4 38
6 Three 8 83
Run Code Online (Sandbox Code Playgroud)
我想制作两个散点图,其中y轴的等级平均值,x轴上的类型.
这是我创建每个图形的方式:
p1 <- ggplot(test, aes(x=reorder(Type, RatingA, mean), y=RatingA)) +
stat_summary(fun.y="mean", geom="point")
p2 <- ggplot(test, aes(x=reorder(Type, RatingB, mean), y=RatingB)) +
stat_summary(fun.y="mean", geom="point")
Run Code Online (Sandbox Code Playgroud)
由于p1和p2具有相同的x轴,我希望它们可以垂直排序.我看着facet_align,但我找不到能做到这一点的东西.
Ist*_*sta 46
您可以grid.arrange()在gridExtra包中使用如下:
grid.arrange(p1, p2)
Run Code Online (Sandbox Code Playgroud)
Cha*_*ase 14
胡里奥
你提到p1和p2具有相同的x轴,但你基于均值进行的重新排序并不能使它们相同.p1的轴是"一 - >二 - >三",而p2轴是"两 - >一 - >三".这是故意的吗?
无论如何,ggplot提供了一些其他的解决方案,这些地块合并成一个,即colour和faceting(你可能已经试过?).其中任何一个的第一步是将meltdata.frame改为长格式.我们将识别id变量"Type"并melt假设其余列为melted.
test.m <- melt(test, id.var = "Type")
Run Code Online (Sandbox Code Playgroud)
快速检查新对象的结构表明大多数都是一致的,除了类型的级别有点不明显:
> str(test.m)
'data.frame': 12 obs. of 3 variables:
$ Type : Factor w/ 3 levels "One","Three",..: 1 3 1 1 2 2 1 3 1 1 ...
$ variable: Factor w/ 2 levels "RatingA","RatingB": 1 1 1 1 1 1 2 2 2 2 ...
$ value : int 3 5 5 7 4 8 36 53 57 74 ...
Run Code Online (Sandbox Code Playgroud)
所以让我们重温水平:
test.m$Type <- factor(test.m$Type, c("One", "Three", "Two"), c("One", "Two", "Three"))
Run Code Online (Sandbox Code Playgroud)
现在为了密谋.有颜色:
ggplot(test.m, aes(x = Type, y = value, group = variable, colour = variable)) +
stat_summary(fun.y = "mean", geom = "point")
Run Code Online (Sandbox Code Playgroud)
或与方面:
ggplot(test.m, aes(x = Type, y = value, group = variable)) +
stat_summary(fun.y = "mean", geom = "point") +
facet_grid(variable ~ ., scales = "free")
Run Code Online (Sandbox Code Playgroud)
注意我scales = "free"在分面中使用了参数,因此每个图都有自己的比例.如果那不是您想要的效果,只需删除该参数即可.
这是一个老问题,但我最近找到了multiplot功能,让他的工作做得很好.
该multiplot功能来自Cookbook for R:
它本身的功能是:
# Multiple plot function
#
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
#
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
#
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
require(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
Run Code Online (Sandbox Code Playgroud)
您只需要将此函数提供给您的脚本即可.