Alp*_*a12 1 python machine-learning keras tensorflow recurrent-neural-network
我正在用 Keras 编写一个序列到序列模型。由于某种原因,当我尝试在下面的函数中定义模型时:
def define_GRU_models(encoder_input_dim,
output_dim,
activation,
n_units):
# define training encoder #
###########################
# layer 1
encoder_inputs = Input(shape=encoder_input_dim)
l1_encoder = GRU(n_units,
name='l1_encoder',
return_sequences=True,
return_state=True)
l1_encoder_outputs, l1_encoder_state = l1_encoder(encoder_inputs)
# layer 2
l2_encoder = GRU(n_units,
name='l2_encoder',
return_state=True)
l2_encoder_outputs, l2_encoder_state = l2_encoder(l1_encoder_outputs)
# define training decoder #
###########################
# layer 1
decoder_inputs = Input(shape=(None, output_dim))
l1_decoder_gru = GRU(int(n_units/2),
name='l1_decoder_gru',
return_sequences=True,
return_state=False)
l1_decoder_outputs, _ = l1_decoder_gru(decoder_inputs)
# layer 2
l2_decoder_gru = GRU(n_units,
name='l2_decoder_gru',
return_sequences=True,
return_state=False)
l2_decoder_outputs, _ = l2_decoder_gru(l1_decoder_outputs, initial_state=l1_encoder_state)
# layer 3
l3_decoder_gru = GRU(n_units,
name='l3_decoder_gru',
return_sequences=True,
return_state=False)
l3_decoder_outputs, _ = l3_decoder_gru(l2_decoder_outputs, initial_state=l2_encoder_state)
# layer 4
l4_decoder_gru = GRU(int(n_units/2),
name='l4_decoder_gru',
return_state=False )
l4_decoder_outputs, _ = l4_decoder_gru(l3_decoder_outputs)
decoder_dense = Dense(output_dim, name='decoder_dense', activation=activation)
decoder_outputs = decoder_dense(l4_decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
return model
Run Code Online (Sandbox Code Playgroud)
我遇到这个错误:
Tensor objects are not iterable when eager execution is not enabled. To iterate over this tensor use tf.map_fn.
Run Code Online (Sandbox Code Playgroud)
对于这一行(第一个解码器层):
l1_decoder_outputs, _ = l1_decoder_gru(decoder_inputs)
Run Code Online (Sandbox Code Playgroud)
我似乎无法在其他地方找到解决方案。我究竟做错了什么?因为它似乎与 keras 示例兼容。
顺便说一句,我的函数输入是:
(168, 12), 24, 'softmax', 128
Run Code Online (Sandbox Code Playgroud)
问题是'l1_decoder_gru'不返回其状态(即return_state=False)。它只有一个分配给 的输出张量l1_decoder_outputs。因此,要解决此问题,请删除, _赋值左侧的部分:
l1_decoder_outputs = l1_decoder_gru(decoder_inputs)
Run Code Online (Sandbox Code Playgroud)
或者,您可以将return_state参数设置为Truefor'l1_decoder_gru'层(当然,如果这样做有意义,并且您可能需要模型的另一部分中该层的状态)。同样的事情也适用于您在模型中定义和使用的其他 GRU 层。
| 归档时间: |
|
| 查看次数: |
4408 次 |
| 最近记录: |