Python 中的偏相关

use*_*780 4 python correlation pandas

我运行了一个相关矩阵:

sns.pairplot(data.dropna())
corr = data.dropna().corr()
corr.style.background_gradient(cmap='coolwarm').set_precision(2)
Run Code Online (Sandbox Code Playgroud)

并且看起来与advisory_pct相当(0.57)负相关all_brokerage_pct。据我所知,我可以声称我们相当确定“当顾问在其投资组合中的咨询比例较低时,他的投资组合中所有经纪业务的比例都很高”。

然而,这是一种“成对”相关性,我们没有控制其余可能变量的影响。

我搜索了 SO,但无法找到如何运行“偏相关”,其中相关矩阵可以提供每两个变量之间的相关性 - 同时控制其余变量。为此,让我们假设brokerage %+ etf brokerage %+ advisory %+ all brokerage %= ~100% 的投资组合。

有这样的功能吗?

在此处输入图片说明 在此处输入图片说明

-- 编辑 -- 按照https://stats.stackexchange.com/questions/288273/partial-correlation-in-panda-dataframe-python运行数据:

dict = {'x1': [1, 2, 3, 4, 5], 'x2': [2, 2, 3, 4, 2], 'x3': [10, 9, 5, 4, 9], 'y' : [5.077, 32.330, 65.140, 47.270, 80.570]} 
data = pd.DataFrame(dict, columns=['x1', 'x2', 'x3', 'y'])

partial_corr_array = df.as_matrix()
data_int = np.hstack((np.ones((partial_corr_array.shape[0],1)), partial_corr_array))
print(data_int)
[[  1.      1.      2.     10.      5.077]
 [  1.      2.      2.      9.     32.33 ]
 [  1.      3.      3.      5.     65.14 ]
 [  1.      4.      4.      4.     47.27 ]
 [  1.      5.      2.      9.     80.57 ]]
arr = np.round(partial_corr(partial_corr_array)[1:, 1:], decimals=2)
print(arr)
[[ 1.    0.99  0.99  1.  ]
 [ 0.99  1.   -1.   -0.99]
 [ 0.99 -1.    1.   -0.99]
 [ 1.   -0.99 -0.99  1.  ]]
corr_df = pd.DataFrame(arr, columns = data.columns, index = data.columns)
print(corr_df)
    x1    x2    x3    y
x1  1.00  0.99  0.99  1.00
x2  0.99  1.00 -1.00 -0.99
x3  0.99 -1.00  1.00 -0.99
y   1.00 -0.99 -0.99  1.00
Run Code Online (Sandbox Code Playgroud)

这些相关性没有多大意义。使用我的真实数据,我得到了一个非常相似的结果,其中所有相关性都四舍五入为 -1..

Rap*_*ael 17

要在控制一个或多个协变量(即数据框中的其他列)的同时计算 Pandas DataFrame 的两列之间的相关性,您可以使用Pinouin包的partial_corr函数(免责声明,我是其创建者):

from pingouin import partial_corr
partial_corr(data=df, x='X', y='Y', covar=['covar1', 'covar2'], method='pearson')
Run Code Online (Sandbox Code Playgroud)

  • 是的,从 v0.2.4 开始,现在可以使用 `pairwise_corr` 函数计算数据帧的所有成对列之间的部分相关性(参见 https://pingouin-stats.org/generated/pingouin.pairwise_corr.html) (3认同)

Mat*_*hew 4

AFAIK,scipy / numpy 中没有偏相关的官方实现。正如 @JC Rocamonde 所指出的,该统计网站的函数可用于计算部分相关性。

我相信这是原始来源:

https://gist.github.com/fabianp/9396204419c7b638d38f

笔记:

  1. 正如 github 页面中所讨论的,如果您的数据未标准化(从您的数据来看并非如此),您可能需要添加一列来为您的拟合添加偏差项。

  2. 如果我没记错的话,它通过控制矩阵中的所有其他剩余变量来计算部分相关性。如果你只想控制一个变量,你可以更改idx为该特定变量的索引。


编辑1(如何添加+如何处理df):

如果您查看链接,他们已经讨论了如何添加。

为了说明它是如何工作的,我添加了另一种方式hstack,使用链接中给定的数据:

data_int = np.hstack((np.ones((data.shape[0],1)), data)) 
test1 = partial_corr(data_int)[1:, 1:]
print(test1)

# You can also add it on the right, as long as you select the correct coefficients
data_int_2 = np.hstack((data, np.ones((data.shape[0],1)))) 
test2 = partial_corr(data_int_2)[:-1, :-1]
print(test2)

data_std = data.copy() 
data_std -= data.mean(axis=0)[np.newaxis, :] 
data_std /= data.std(axis=0)[np.newaxis, :] 
test3 = partial_corr(data_std)
print(test3)
Run Code Online (Sandbox Code Playgroud)

输出:

[[ 1.         -0.54341003 -0.14076948]
 [-0.54341003  1.         -0.76207595]
 [-0.14076948 -0.76207595  1.        ]]
[[ 1.         -0.54341003 -0.14076948]
 [-0.54341003  1.         -0.76207595]
 [-0.14076948 -0.76207595  1.        ]]
[[ 1.         -0.54341003 -0.14076948]
 [-0.54341003  1.         -0.76207595]
 [-0.14076948 -0.76207595  1.        ]]
Run Code Online (Sandbox Code Playgroud)

如果你想维护列,最简单的方法是提取列并在计算后将它们放回原处:

# Assume that we have a DataFrame with columns x, y, z
data_as_df = pd.DataFrame(data, columns=['x','y','z'])
data_as_array = data_as_df.values
partial_corr_array = partial_corr(np.hstack((np.ones((data_as_array.shape[0],1)), data_as_array))
                                 )[1:,1:]
corr_df = pd.DataFrame(partial_corr_array, columns = data_as_df.columns)
print(corr_df)
Run Code Online (Sandbox Code Playgroud)

输出:

       x      y      z
0  1.000 -0.543 -0.141
1 -0.543  1.000 -0.762
2 -0.141 -0.762  1.000
Run Code Online (Sandbox Code Playgroud)

希望它有帮助!如果有任何不清楚的地方请告诉我!


编辑2:

我认为问题在于每个拟合中没有常数项...我重写了 sklearn 中的代码以使其更容易添加截距:

def calculate_partial_correlation(input_df):
    """
    Returns the sample linear partial correlation coefficients between pairs of variables,
    controlling for all other remaining variables

    Parameters
    ----------
    input_df : array-like, shape (n, p)
        Array with the different variables. Each column is taken as a variable.

    Returns
    -------
    P : array-like, shape (p, p)
        P[i, j] contains the partial correlation of input_df[:, i] and input_df[:, j]
        controlling for all other remaining variables.
    """
    partial_corr_matrix = np.zeros((input_df.shape[1], input_df.shape[1]));
    for i, column1 in enumerate(input_df):
        for j, column2 in enumerate(input_df):
            control_variables = np.delete(np.arange(input_df.shape[1]), [i, j]);
            if i==j:
                partial_corr_matrix[i, j] = 1;
                continue
            data_control_variable = input_df.iloc[:, control_variables]
            data_column1 = input_df[column1].values
            data_column2 = input_df[column2].values
            fit1 = linear_model.LinearRegression(fit_intercept=True)
            fit2 = linear_model.LinearRegression(fit_intercept=True)
            fit1.fit(data_control_variable, data_column1)
            fit2.fit(data_control_variable, data_column2)
            residual1 = data_column1 - (np.dot(data_control_variable, fit1.coef_) + fit1.intercept_)
            residual2 = data_column2 - (np.dot(data_control_variable, fit2.coef_) + fit2.intercept_)
            partial_corr_matrix[i,j] = stats.pearsonr(residual1, residual2)[0]
    return pd.DataFrame(partial_corr_matrix, columns = input_df.columns, index = input_df.columns)

# Generating data in our minion world
test_sample = 10000;
Math_score = np.random.randint(100,600, size=test_sample) + 20 * np.random.random(size=test_sample)
Eng_score = np.random.randint(100,600, size=test_sample) - 10 * Math_score + 20 * np.random.random(size=test_sample)
Phys_score = Math_score * 5 - Eng_score + np.random.randint(100,600, size=test_sample) + 20 * np.random.random(size=test_sample)
Econ_score = np.random.randint(100,200, size=test_sample) + 20 * np.random.random(size=test_sample)
Hist_score = Econ_score + 100 * np.random.random(size=test_sample)

minions_df = pd.DataFrame(np.vstack((Math_score, Eng_score, Phys_score, Econ_score, Hist_score)).T, 
                          columns=['Math', 'Eng', 'Phys', 'Econ', 'Hist'])

calculate_partial_correlation(minions_df)
Run Code Online (Sandbox Code Playgroud)

输出:

----  ----------  -----------  ------------  -----------  ------------
Math   1          -0.322462     0.436887     0.0104036    -0.0140536
Eng   -0.322462    1           -0.708277     0.00802087   -0.010939
Phys   0.436887   -0.708277     1            0.000340397  -0.000250916
Econ   0.0104036   0.00802087   0.000340397  1             0.721472
Hist  -0.0140536  -0.010939    -0.000250916  0.721472      1
----  ----------  -----------  ------------  -----------  ------------
Run Code Online (Sandbox Code Playgroud)

如果这不起作用,请告诉我!