Lun*_*din 4 c++ io winapi asynchronous deque
我正在为Windows编写一个串口软件.为了提高性能,我试图将例程转换为使用异步I/O. 我有代码并且运行得相当好,但我是半初学者,我想进一步提高程序的性能.在程序的压力测试期间(即在高波特率下尽可能快地向/从端口突发数据),CPU负载变得非常高.
如果有人在Windows中有异步I/O和多线程的经验,如果你能看一下我的程序,我将不胜感激.我有两个主要问题:
异步I/O是否正确实现?我在网上发现了一些相当可靠的来源,建议您可以将用户数据传递给回调函数,方法是在最后用自己的数据实现自己的OVERLAPPED结构.这似乎工作得很好,但它确实看起来有点"hackish"给我.此外,当我从同步/轮询转换为异步/回调时,程序的性能并没有那么大提高,让我怀疑我做错了什么.
使用STL std :: deque作为FIFO数据缓冲区是否合理?由于当前编写了程序,我只允许在必须处理之前一次接收1个字节的数据.因为我不知道我将收到多少数据,所以可能是无穷无尽的数量.我假设这个1字节一次在必须分配数据时会产生deque线后面的缓慢行为.而且我也不相信deque也是线程安全的(我应该吗?).如果使用STL deque不合理,是否有任何建议可以使用更好的数据类型?基于静态数组的圆环缓冲区?
关于代码的任何其他反馈也是最受欢迎的.
实现了串行例程,以便我有一个名为"Comport"的父类,它处理所有与串行I/O相关的内容.从这个类我继承了另一个名为"ThreadedComport"的类,这是一个多线程版本.
ThreadedComport类(相关部分)
class ThreadedComport : public Comport
{
private:
HANDLE _hthread_port; /* thread handle */
HANDLE _hmutex_port; /* COM port access */
HANDLE _hmutex_send; /* send buffer access */
HANDLE _hmutex_rec; /* rec buffer access */
deque<uint8> _send_buf;
deque<uint8> _rec_buf;
uint16 _data_sent;
uint16 _data_received;
HANDLE _hevent_kill_thread;
HANDLE _hevent_open;
HANDLE _hevent_close;
HANDLE _hevent_write_done;
HANDLE _hevent_read_done;
HANDLE _hevent_ext_send; /* notifies external thread */
HANDLE _hevent_ext_receive; /* notifies external thread */
typedef struct
{
OVERLAPPED overlapped;
ThreadedComport* caller; /* add user data to struct */
} OVERLAPPED_overlap;
OVERLAPPED_overlap _send_overlapped;
OVERLAPPED_overlap _rec_overlapped;
uint8* _write_data;
uint8 _read_data;
DWORD _bytes_read;
static DWORD WINAPI _tranceiver_thread (LPVOID param);
void _send_data (void);
void _receive_data (void);
DWORD _wait_for_io (void);
static void WINAPI _send_callback (DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped);
static void WINAPI _receive_callback (DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped);
};
Run Code Online (Sandbox Code Playgroud)
通过CreateThread()创建的主线程例程:
DWORD WINAPI ThreadedComport::_tranceiver_thread (LPVOID param)
{
ThreadedComport* caller = (ThreadedComport*) param;
HANDLE handle_array [3] =
{
caller->_hevent_kill_thread, /* WAIT_OBJECT_0 */
caller->_hevent_open, /* WAIT_OBJECT_1 */
caller->_hevent_close /* WAIT_OBJECT_2 */
};
DWORD result;
do
{
/* wait for anything to happen */
result = WaitForMultipleObjects(3,
handle_array,
false, /* dont wait for all */
INFINITE);
if(result == WAIT_OBJECT_1 ) /* open? */
{
do /* while port is open, work */
{
caller->_send_data();
caller->_receive_data();
result = caller->_wait_for_io(); /* will wait for the same 3 as in handle_array above,
plus all read/write specific events */
} while (result != WAIT_OBJECT_0 && /* while not kill thread */
result != WAIT_OBJECT_2); /* while not close port */
}
else if(result == WAIT_OBJECT_2) /* close? */
{
; /* do nothing */
}
} while (result != WAIT_OBJECT_0); /* kill thread? */
return 0;
}
Run Code Online (Sandbox Code Playgroud)
它又调用以下三个函数:
void ThreadedComport::_send_data (void)
{
uint32 send_buf_size;
if(_send_buf.size() != 0) // anything to send?
{
WaitForSingleObject(_hmutex_port, INFINITE);
if(_is_open) // double-check port
{
bool result;
WaitForSingleObject(_hmutex_send, INFINITE);
_data_sent = 0;
send_buf_size = _send_buf.size();
if(send_buf_size > (uint32)_MAX_MESSAGE_LENGTH)
{
send_buf_size = _MAX_MESSAGE_LENGTH;
}
_write_data = new uint8 [send_buf_size];
for(uint32 i=0; i<send_buf_size; i++)
{
_write_data[i] = _send_buf.front();
_send_buf.pop_front();
}
_send_buf.clear();
ReleaseMutex(_hmutex_send);
result = WriteFileEx (_hcom, // handle to output file
(void*)_write_data, // pointer to input buffer
send_buf_size, // number of bytes to write
(LPOVERLAPPED)&_send_overlapped, // pointer to async. i/o data
(LPOVERLAPPED_COMPLETION_ROUTINE )&_send_callback);
SleepEx(INFINITE, true); // Allow callback to come
if(result == false)
{
// error handling here
}
} // if(_is_open)
ReleaseMutex(_hmutex_port);
}
else /* nothing to send */
{
SetEvent(_hevent_write_done); // Skip write
}
}
void ThreadedComport::_receive_data (void)
{
WaitForSingleObject(_hmutex_port, INFINITE);
if(_is_open)
{
BOOL result;
_bytes_read = 0;
result = ReadFileEx (_hcom, // handle to output file
(void*)&_read_data, // pointer to input buffer
1, // number of bytes to read
(OVERLAPPED*)&_rec_overlapped, // pointer to async. i/o data
(LPOVERLAPPED_COMPLETION_ROUTINE )&_receive_callback);
SleepEx(INFINITE, true); // Allow callback to come
if(result == FALSE)
{
DWORD last_error = GetLastError();
if(last_error == ERROR_OPERATION_ABORTED) // disconnected ?
{
close(); // close the port
}
}
}
ReleaseMutex(_hmutex_port);
}
DWORD ThreadedComport::_wait_for_io (void)
{
DWORD result;
bool is_write_done = false;
bool is_read_done = false;
HANDLE handle_array [5] =
{
_hevent_kill_thread,
_hevent_open,
_hevent_close,
_hevent_write_done,
_hevent_read_done
};
do /* COM port message pump running until sending / receiving is done */
{
result = WaitForMultipleObjects(5,
handle_array,
false, /* dont wait for all */
INFINITE);
if(result <= WAIT_OBJECT_2)
{
break; /* abort */
}
else if(result == WAIT_OBJECT_3) /* write done */
{
is_write_done = true;
SetEvent(_hevent_ext_send);
}
else if(result == WAIT_OBJECT_4) /* read done */
{
is_read_done = true;
if(_bytes_read > 0)
{
uint32 errors = 0;
WaitForSingleObject(_hmutex_rec, INFINITE);
_rec_buf.push_back((uint8)_read_data);
_data_received += _bytes_read;
while((uint16)_rec_buf.size() > _MAX_MESSAGE_LENGTH)
{
_rec_buf.pop_front();
}
ReleaseMutex(_hmutex_rec);
_bytes_read = 0;
ClearCommError(_hcom, &errors, NULL);
SetEvent(_hevent_ext_receive);
}
}
} while(!is_write_done || !is_read_done);
return result;
}
Run Code Online (Sandbox Code Playgroud)
异步I/O回调函数:
void WINAPI ThreadedComport::_send_callback (DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped)
{
ThreadedComport* _this = ((OVERLAPPED_overlap*)lpOverlapped)->caller;
if(dwErrorCode == 0) // no errors
{
if(dwNumberOfBytesTransfered > 0)
{
_this->_data_sent = dwNumberOfBytesTransfered;
}
}
delete [] _this->_write_data; /* always clean this up */
SetEvent(lpOverlapped->hEvent);
}
void WINAPI ThreadedComport::_receive_callback (DWORD dwErrorCode,
DWORD dwNumberOfBytesTransfered,
LPOVERLAPPED lpOverlapped)
{
if(dwErrorCode == 0) // no errors
{
if(dwNumberOfBytesTransfered > 0)
{
ThreadedComport* _this = ((OVERLAPPED_overlap*)lpOverlapped)->caller;
_this->_bytes_read = dwNumberOfBytesTransfered;
}
}
SetEvent(lpOverlapped->hEvent);
}
Run Code Online (Sandbox Code Playgroud)
第一个问题很简单.这种方法不是hackish; 你拥有OVERLAPPED记忆和随之而来的一切.这是Raymond Chen最好的描述:http://blogs.msdn.com/b/oldnewthing/archive/2010/12/17/10106259.aspx
如果你在等待I/O完成时有更好的东西,你只会期望性能提升.如果你所做的只是SleepEx,你只会看到CPU%下降.线索名称为"重叠" - 它允许您重叠计算和I/O.
std::deque<unsigned char>可以处理FIFO数据而不会出现大问题.它可能会回收4KB的块(精确的数字由广泛的分析确定,全部为你完成).
[edit]我进一步研究了你的代码,似乎代码是不必要的复杂.对于初学者来说,异步I/O的一个主要好处是你不需要所有的线程.线程允许您使用更多内核,但您正在处理速度较慢的I/O设备.如果没有花费所有时间等待,即使是单个核心就足够了.而这恰恰是I/O重叠的原因.您只需将一个线程专用于端口的所有I/O工作.由于它是唯一的线程,因此不需要互斥锁来访问该端口.
OTOH,你需要一个围绕deque<uint8>对象的互斥锁,因为生产者/消费者线程与comport线程不同.
| 归档时间: |
|
| 查看次数: |
3665 次 |
| 最近记录: |