尝试使用Win32线程进行异步I/O.

Lun*_*din 4 c++ io winapi asynchronous deque

我正在为Windows编写一个串口软件.为了提高性能,我试图将例程转换为使用异步I/O. 我有代码并且运行得相当好,但我是半初学者,我想进一步提高程序的性能.在程序的压力测试期间(即在高波特率下尽可能快地向/从端口突发数据),CPU负载变得非常高.

如果有人在Windows中有异步I/O和多线程的经验,如果你能看一下我的程序,我将不胜感激.我有两个主要问题:

  • 异步I/O是否正确实现?我在网上发现了一些相当可靠的来源,建议您可以将用户数据传递给回调函数,方法是在最后用自己的数据实现自己的OVERLAPPED结构.这似乎工作得很好,但它确实看起来有点"hackish"给我.此外,当我从同步/轮询转换为异步/回调时,程序的性能并没有那么大提高,让我怀疑我做错了什么.

  • 使用STL std :: deque作为FIFO数据缓冲区是否合理?由于当前编写了程序,我只允许在必须处理之前一次接收1个字节的数据.因为我不知道我将收到多少数据,所以可能是无穷无尽的数量.我假设这个1字节一次在必须分配数据时会产生deque线后面的缓慢行为.而且我也不相信deque也是线程安全的(我应该吗?).如果使用STL deque不合理,是否有任何建议可以使用更好的数据类型?基于静态数组的圆环缓冲区?

关于代码的任何其他反馈也是最受欢迎的.


实现了串行例程,以便我有一个名为"Comport"的父类,它处理所有与串行I/O相关的内容.从这个类我继承了另一个名为"ThreadedComport"的类,这是一个多线程版本.

ThreadedComport类(相关部分)

class ThreadedComport : public Comport
{
  private:

    HANDLE        _hthread_port;                 /* thread handle      */
    HANDLE        _hmutex_port;                  /* COM port access    */
    HANDLE        _hmutex_send;                  /* send buffer access */
    HANDLE        _hmutex_rec;                   /* rec buffer access  */

    deque<uint8>  _send_buf;
    deque<uint8>  _rec_buf;
    uint16        _data_sent;
    uint16        _data_received;

    HANDLE        _hevent_kill_thread;
    HANDLE        _hevent_open;
    HANDLE        _hevent_close;
    HANDLE        _hevent_write_done;
    HANDLE        _hevent_read_done;
    HANDLE        _hevent_ext_send;              /* notifies external thread */
    HANDLE        _hevent_ext_receive;           /* notifies external thread */

    typedef struct
    {
      OVERLAPPED       overlapped;
      ThreadedComport* caller;                  /* add user data to struct */
    } OVERLAPPED_overlap;

    OVERLAPPED_overlap _send_overlapped;
    OVERLAPPED_overlap _rec_overlapped;
    uint8*             _write_data;
    uint8              _read_data;
    DWORD              _bytes_read;

    static DWORD WINAPI _tranceiver_thread (LPVOID param);
    void                _send_data         (void);
    void                _receive_data      (void);
    DWORD               _wait_for_io       (void);

    static void WINAPI  _send_callback     (DWORD dwErrorCode,
                                            DWORD dwNumberOfBytesTransfered,
                                            LPOVERLAPPED lpOverlapped);
    static void WINAPI  _receive_callback  (DWORD dwErrorCode,
                                            DWORD dwNumberOfBytesTransfered,
                                            LPOVERLAPPED lpOverlapped);

};
Run Code Online (Sandbox Code Playgroud)

通过CreateThread()创建的主线程例程:

DWORD WINAPI ThreadedComport::_tranceiver_thread (LPVOID param)
{
  ThreadedComport* caller = (ThreadedComport*) param;

  HANDLE handle_array [3] =
  {
    caller->_hevent_kill_thread,                 /* WAIT_OBJECT_0 */
    caller->_hevent_open,                        /* WAIT_OBJECT_1 */
    caller->_hevent_close                        /* WAIT_OBJECT_2 */
  };

  DWORD result;

  do
  {
    /* wait for anything to happen */
    result = WaitForMultipleObjects(3,
                                    handle_array,
                                    false,       /* dont wait for all */
                                    INFINITE);

    if(result == WAIT_OBJECT_1 )                 /* open? */
    {
      do                                         /* while port is open, work */
      {
        caller->_send_data();
        caller->_receive_data();
        result = caller->_wait_for_io();         /* will wait for the same 3 as in handle_array above,
                                                    plus all read/write specific events */

      } while (result != WAIT_OBJECT_0 &&        /* while not kill thread */
               result != WAIT_OBJECT_2);         /* while not close port */
    }
    else if(result == WAIT_OBJECT_2)             /* close? */
    {
      ;                                          /* do nothing */
    }

  } while (result != WAIT_OBJECT_0);             /* kill thread? */

  return 0;
}
Run Code Online (Sandbox Code Playgroud)

它又调用以下三个函数:

void ThreadedComport::_send_data (void)
{
  uint32 send_buf_size;

  if(_send_buf.size() != 0)                      // anything to send?
  {
    WaitForSingleObject(_hmutex_port, INFINITE);
      if(_is_open)                               // double-check port
      {
        bool result;

        WaitForSingleObject(_hmutex_send, INFINITE);
          _data_sent = 0;
          send_buf_size = _send_buf.size();
          if(send_buf_size > (uint32)_MAX_MESSAGE_LENGTH)
          {
            send_buf_size = _MAX_MESSAGE_LENGTH;
          }
          _write_data = new uint8 [send_buf_size];


          for(uint32 i=0; i<send_buf_size; i++)
          {
            _write_data[i] = _send_buf.front();
            _send_buf.pop_front();
          }
          _send_buf.clear();
        ReleaseMutex(_hmutex_send);


        result = WriteFileEx (_hcom,              // handle to output file
                              (void*)_write_data, // pointer to input buffer
                              send_buf_size,      // number of bytes to write
                              (LPOVERLAPPED)&_send_overlapped, // pointer to async. i/o data
                              (LPOVERLAPPED_COMPLETION_ROUTINE )&_send_callback);

        SleepEx(INFINITE, true);                 // Allow callback to come

        if(result == false)
        {
          // error handling here
        }

      } // if(_is_open)
    ReleaseMutex(_hmutex_port);
  }
  else /* nothing to send */
  {
    SetEvent(_hevent_write_done);                // Skip write
  }
}


void ThreadedComport::_receive_data (void)
{
  WaitForSingleObject(_hmutex_port, INFINITE);

    if(_is_open)
    {
      BOOL  result;

      _bytes_read = 0;
      result = ReadFileEx (_hcom,                  // handle to output file
                           (void*)&_read_data,     // pointer to input buffer
                           1,                      // number of bytes to read
                           (OVERLAPPED*)&_rec_overlapped, // pointer to async. i/o data
                           (LPOVERLAPPED_COMPLETION_ROUTINE )&_receive_callback);

      SleepEx(INFINITE, true);                     // Allow callback to come

      if(result == FALSE)
      {
        DWORD last_error = GetLastError();
        if(last_error == ERROR_OPERATION_ABORTED)  // disconnected ?
        {
          close();                                 // close the port
        }
      }
    }

  ReleaseMutex(_hmutex_port);
}



DWORD ThreadedComport::_wait_for_io (void)
{
  DWORD result;
  bool  is_write_done = false;
  bool  is_read_done  = false;

  HANDLE handle_array [5] =
  {
    _hevent_kill_thread,
    _hevent_open,
    _hevent_close,
    _hevent_write_done,
    _hevent_read_done
  };


  do /* COM port message pump running until sending / receiving is done */
  {
    result = WaitForMultipleObjects(5,
                        handle_array,
                        false,                     /* dont wait for all */
                        INFINITE);

    if(result <= WAIT_OBJECT_2)
    {
      break;                                       /* abort */
    }
    else if(result == WAIT_OBJECT_3)               /* write done */
    {
      is_write_done = true;
      SetEvent(_hevent_ext_send);
    }
    else if(result == WAIT_OBJECT_4)               /* read done */
    {
      is_read_done = true;

      if(_bytes_read > 0)
      {
        uint32 errors = 0;

        WaitForSingleObject(_hmutex_rec, INFINITE);
          _rec_buf.push_back((uint8)_read_data);
          _data_received += _bytes_read;

          while((uint16)_rec_buf.size() > _MAX_MESSAGE_LENGTH)
          {
            _rec_buf.pop_front();
          }

        ReleaseMutex(_hmutex_rec);
        _bytes_read = 0;

        ClearCommError(_hcom, &errors, NULL);
        SetEvent(_hevent_ext_receive);
      }
    }
  } while(!is_write_done || !is_read_done);

  return result;
}
Run Code Online (Sandbox Code Playgroud)

异步I/O回调函数:

void WINAPI ThreadedComport::_send_callback (DWORD dwErrorCode,
                                             DWORD dwNumberOfBytesTransfered,
                                             LPOVERLAPPED lpOverlapped)
{
  ThreadedComport* _this = ((OVERLAPPED_overlap*)lpOverlapped)->caller;

  if(dwErrorCode == 0)                           // no errors
  {
    if(dwNumberOfBytesTransfered > 0)
    {
      _this->_data_sent = dwNumberOfBytesTransfered;
    }
  }


  delete [] _this->_write_data;                  /* always clean this up */
  SetEvent(lpOverlapped->hEvent);
}


void WINAPI ThreadedComport::_receive_callback (DWORD dwErrorCode,
                                                DWORD dwNumberOfBytesTransfered,
                                                LPOVERLAPPED lpOverlapped)
{
  if(dwErrorCode == 0)                           // no errors
  {
    if(dwNumberOfBytesTransfered > 0)
    {
      ThreadedComport* _this = ((OVERLAPPED_overlap*)lpOverlapped)->caller;
      _this->_bytes_read = dwNumberOfBytesTransfered;
    }
  }

  SetEvent(lpOverlapped->hEvent);
}
Run Code Online (Sandbox Code Playgroud)

MSa*_*ers 7

第一个问题很简单.这种方法不是hackish; 你拥有OVERLAPPED记忆和随之而来的一切.这是Raymond Chen最好的描述:http://blogs.msdn.com/b/oldnewthing/archive/2010/12/17/10106259.aspx

如果你在等待I/O完成时有更好的东西,你只会期望性能提升.如果你所做的只是SleepEx,你只会看到CPU%下降.线索名称为"重叠" - 它允许您重叠计算和I/O.

std::deque<unsigned char>可以处理FIFO数据而不会出现大问题.它可能会回收4KB的块(精确的数字由广泛的分析确定,全部为你完成).

[edit]我进一步研究了你的代码,似乎代码是不必要的复杂.对于初学者来说,异步I/O的一个主要好处是你不需要所有的线程.线程允许您使用更多内核,但您正在处理速度较慢的I/O设备.如果没有花费所有时间等待,即使是单个核心就足够了.而这恰恰是I/O重叠的原因.您只需将一个线程专用于端口的所有I/O工作.由于它是唯一的线程,因此不需要互斥锁来访问该端口.

OTOH,你需要一个围绕deque<uint8>对象的互斥锁,因为生产者/消费者线程与comport线程不同.