Den*_* P. 7 python machine-learning neural-network keras tensorflow
如何修复输入数组以满足输入形状?
我试图转输入数组,如所描述这里,但误差是相同的。
ValueError:检查输入时出错:预期dense_input具有形状(21,)但得到形状为(1,)的数组
import tensorflow as tf
import numpy as np
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(40, input_shape=(21,), activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
arrTest1 = np.array([0.1,0.1,0.1,0.1,0.1,0.5,0.1,0.0,0.1,0.6,0.1,0.1,0.0,0.0,0.0,0.1,0.0,0.0,0.1,0.0,0.0])
scores = model.predict(arrTest1)
print(scores)
Run Code Online (Sandbox Code Playgroud)
您的测试数组arrTest1是 21 的一维向量:
>>> arrTest1.ndim
1
Run Code Online (Sandbox Code Playgroud)
您尝试提供给模型的是一行 21 个特征。您只需要多一组括号:
arrTest1 = np.array([[0.1, 0.1, 0.1, 0.1, 0.1, 0.5, 0.1, 0., 0.1, 0.6, 0.1, 0.1, 0., 0., 0., 0.1, 0., 0., 0.1, 0., 0.]])
Run Code Online (Sandbox Code Playgroud)
现在您有一行包含 21 个值:
>>> arrTest1.shape
(1, 21)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
8678 次 |
| 最近记录: |