在 Keras 中将 LSTM 与具有不同张量维度的 CNN 连接起来

Sul*_*ade 3 python deep-learning conv-neural-network lstm keras

这是我尝试使用连接操作合并的两个神经元网络。网络应按 1-好电影和 0-坏电影对 IMDB 电影评论进行分类

def cnn_lstm_merged():
       embedding_vecor_length = 32
       cnn_model = Sequential()
       cnn_model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
       cnn_model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
       cnn_model.add(MaxPooling1D(pool_size=2))
       cnn_model.add(Flatten())

       lstm_model = Sequential()
       lstm_model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
       lstm_model.add(LSTM(64, activation = 'relu'))
       lstm_model.add(Flatten())

       merge = concatenate([lstm_model, cnn_model])
       hidden = (Dense(1, activation = 'sigmoid'))(merge)
       #print(model.summary())
       output = hidden.fit(X_train, y_train, epochs=3, batch_size=64)
       return output
Run Code Online (Sandbox Code Playgroud)

但是当我运行代码时出现错误:

  File "/home/pythonist/Desktop/EnsemblingLSTM_CONV/train.py", line 59, in cnn_lstm_merged
    lstm_model.add(Flatten())
  File "/home/pythonist/deeplearningenv/lib/python3.6/site-packages/keras/engine/sequential.py", line 185, in add
    output_tensor = layer(self.outputs[0])
  File "/home/pythonist/deeplearningenv/lib/python3.6/site-packages/keras/engine/base_layer.py", line 414, in __call__
    self.assert_input_compatibility(inputs)
  File "/home/pythonist/deeplearningenv/lib/python3.6/site-packages/keras/engine/base_layer.py", line 327, in assert_input_compatibility
    str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer flatten_2: expected min_ndim=3, found ndim=2
[Finished in 4.8s with exit code 1]
Run Code Online (Sandbox Code Playgroud)

如何合并这两层?谢谢

zim*_*rol 5

不需要在 theFlatten之后使用,LSTM因为LSTM(默认情况下)仅返回最后一个状态而不是序列,即数据将具有形状,(BS, n_output)Flatten层期望其形状(BS, a, b)将转换为(BS, a*b)

因此,要么删除Flatten图层并仅使用最后一个状态,要么添加return_sequences=TrueLSTM. 这将使LSTM返回所有输出而不仅仅是最后一个输出,即(BS, T, n_out)

编辑:此外,您创建最终模型的方式是错误的。请看一下这个例子;对于你来说,它应该是这样的:

  merge = Concatenate([lstm_model, cnn_model])
  hidden = Dense(1, activation = 'sigmoid')
  conc_model = Sequential()
  conc_model.add(merge)
  conc_model.add(hidden)
  conc_model.compile(...)

  output = conc_model .fit(X_train, y_train, epochs=3, batch_size=64)
Run Code Online (Sandbox Code Playgroud)

总而言之,使用函数式 API可能会更好。

编辑2:这是最终的代码

cnn_model = Sequential()
cnn_model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
cnn_model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
cnn_model.add(MaxPooling1D(pool_size=2))
cnn_model.add(Flatten())

lstm_model = Sequential()
lstm_model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
lstm_model.add(LSTM(64, activation = 'relu', return_sequences=True))
lstm_model.add(Flatten())

# instead of the last two lines you can also use
# lstm_model.add(LSTM(64, activation = 'relu'))
# then you do not have to use the Flatten layer. depends on your actual needs

merge = Concatenate([lstm_model, cnn_model])
hidden = Dense(1, activation = 'sigmoid')
conc_model = Sequential()
conc_model.add(merge)
conc_model.add(hidden)
Run Code Online (Sandbox Code Playgroud)