add*_*ted 2 python dataframe pandas
我想在数据框被分组到某个列之后获得一个列的 +/- 7 天期间的计数和值的总和
示例数据(经过编辑以反映我的真实数据集):
group | date | amount
-------------------------------------------
A | 2017-12-26 04:20:20 | 50000.0
A | 2018-01-17 00:54:15 | 60000.0
A | 2018-01-27 06:10:12 | 150000.0
A | 2018-02-01 01:15:06 | 100000.0
A | 2018-02-11 05:05:34 | 150000.0
A | 2018-03-01 11:20:04 | 150000.0
A | 2018-03-16 12:14:01 | 150000.0
A | 2018-03-23 05:15:07 | 150000.0
A | 2018-04-02 10:40:35 | 150000.0
Run Code Online (Sandbox Code Playgroud)
group by groupthen sum 基于date-7< date<date+7
我想要的结果:
group | date | amount | grouped_sum
-----------------------------------------------------------
A | 2017-12-26 04:00:00 | 50000.0 | 50000.0
A | 2018-01-17 00:00:00 | 60000.0 | 60000.0
A | 2018-01-27 06:00:00 | 150000.0 | 250000.0
A | 2018-02-01 01:00:00 | 100000.0 | 250000.0
A | 2018-02-11 05:05:00 | 150000.0 | 150000.0
A | 2018-03-01 11:00:04 | 150000.0 | 150000.0
A | 2018-03-16 12:00:01 | 150000.0 | 150000.0
A | 2018-03-23 05:00:07 | 100000.0 | 100000.0
A | 2018-04-02 10:00:00 | 100000.0 | 100000.0
Run Code Online (Sandbox Code Playgroud)
实现数据集的快速片段:
group = 9 * ['A']
date = pd.to_datetime(['2017-12-26 04:20:20', '2018-01-17 00:54:15',
'2018-01-27 06:10:12', '2018-02-01 01:15:06',
'2018-02-11 05:05:34', '2018-03-01 11:20:04',
'2018-03-16 12:14:01', '2018-03-23 05:15:07',
'2018-04-02 10:40:35'])
amount = [50000.0, 60000.0, 150000.0, 100000.0, 150000.0,
150000.0, 150000.0, 150000.0, 150000.0]
df = pd.DataFrame({'group':group, 'date':date, 'amount':amount})
Run Code Online (Sandbox Code Playgroud)
一点解释:
我不知道如何在日期范围内求和。如果我这样做,我也许可以做到:
1.创建另一列,为每一行显示 date-7 和 date+7
group | date | amount | date-7 | date+7
-------------------------------------------------------------
A | 2017-12-26 | 50000.0 | 2017-12-19 | 2018-01-02
A | 2018-01-17 | 60000.0 | 2018-01-10 | 2018-01-24
Run Code Online (Sandbox Code Playgroud)
2.计算日期范围之间的金额: df[df.group == 'A' & df.date > df.date-7 & df.date < df.date+7].amount.sum()
3.但这种方法相当繁琐。
编辑(2018-09-01):根据@jezrael的答案发现下面的这个方法,它对我有用,但只适用于单个组:
t = pd.Timedelta(7, unit='d')
def g(row):
res = df[(df.created > row.created - t) & (df.created < row.created + t)].amount.sum()
return res
df['new'] = df.apply(g, axis=1)
Run Code Online (Sandbox Code Playgroud)
这是每一行和每组的问题需要循环:
t = pd.Timedelta(7, unit='d')
def f(x):
return x.apply(lambda y: x.loc[x['date'].between(y['date'] - t,
y['date'] + t,
inclusive=False),'amount'].sum() ,axis=1)
df['new'] = df.groupby('group', group_keys=False).apply(f)
print (df)
group date amount new
0 A 2018-01-01 10 10.0
1 A 2018-01-14 20 40.0
2 A 2018-01-15 20 40.0
3 B 2018-02-03 10 30.0
4 B 2018-02-04 10 30.0
5 B 2018-02-05 10 30.0
Run Code Online (Sandbox Code Playgroud)
感谢@jpp 的改进:
def f(x, t):
return x.apply(lambda y: x.loc[x['date'].between(y['date'] - t,
y['date'] + t,
inclusive=False),'amount'].sum(),axis=1)
df['new'] = df.groupby('group', group_keys=False).apply(f, pd.Timedelta(7, unit='d'))
Run Code Online (Sandbox Code Playgroud)
验证解决方案:
t = pd.Timedelta(7, unit='d')
df = df[df['group'] == 'A']
def test(y):
a = df.loc[df['date'].between(y['date'] - t, y['date'] + t,inclusive=False)]
print (a)
print (a['amount'])
return a['amount'].sum()
group date amount
0 A 2018-01-01 10
0 10
Name: amount, dtype: int64
group date amount
1 A 2018-01-14 20
2 A 2018-01-15 20
1 20
2 20
Name: amount, dtype: int64
group date amount
1 A 2018-01-14 20
2 A 2018-01-15 20
1 20
2 20
Name: amount, dtype: int64
df['new'] = df.apply(test,axis=1)
print (df)
group date amount new
0 A 2018-01-01 10 10
1 A 2018-01-14 20 40
2 A 2018-01-15 20 40
Run Code Online (Sandbox Code Playgroud)