tes*_*acc 3 scala apache-spark databricks
我有[~]一些我正在阅读的 csv 文件的分隔符。
1[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
Run Code Online (Sandbox Code Playgroud)
我试过这个
val rddFile = sc.textFile("file.csv")
val rddTransformed = rddFile.map(eachLine=>eachLine.split("[~]"))
val df = rddTransformed.toDF()
display(df)
Run Code Online (Sandbox Code Playgroud)
然而,这个问题在于它是作为单个值数组出现的,每个字段中都有[和]。所以数组将是
["1[","]a[","]b[",...]
Run Code Online (Sandbox Code Playgroud)
我不能用
val df = spark.read.option("sep", "[~]").csv("file.csv")
Run Code Online (Sandbox Code Playgroud)
因为不支持多字符分隔符。我可以采取什么其他方法?
1[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
2[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
3[~]a[~]b[~]dd[~][~]ww[~][~]4[~]4[~][~][~][~][~]
Run Code Online (Sandbox Code Playgroud)
编辑 - 这不是重复的,重复的线程是关于多分隔符的,这是多字符单分隔符
val df = spark.read.format("csv").load("inputpath")
df.rdd.map(i => i.mkString.split("\\[\\~\\]")).toDF().show(false)
Run Code Online (Sandbox Code Playgroud)
试试下面
为您的另一个要求
val df1 = df.rdd.map(i => i.mkString.split("\\[\\~\\]").mkString(",")).toDF()
val iterationColumnLength = df1.rdd.first.mkString(",").split(",").length
df1.withColumn("value",split(col("value"),",")).select((0 until iterationColumnLength).map(i => col("value").getItem(i).as("col_" + i)): _*).show
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
10878 次 |
| 最近记录: |