不明白为什么我的超前和滞后功能忽略了group by。这是一个简单的例子(实际上我需要按 5 列分组)。?
# Dummy DataSet
df <- data.frame(group = c("a","a","a","a", "a", "b", "b", "b", "b", "b"),
order = c(3, 4, 2, 5, 1, 1, 3, 4, 2, 4),
value = c(15, 22, 43, 31, 25, 11, 37, 24, 18, 9))
"group" "order" "value"
"a" 3 15
"a" 4 22
"a" 2 43
"a" 5 31
"a" 1 25
"b" 1 11
"b" 3 37
"b" 4 24
"b" 2 18
"b" 4 9
Run Code Online (Sandbox Code Playgroud)
试过这个,但即使是 order by 在这里也不起作用
df %>%
group_by(group) %>%
mutate(previous = dplyr::lag(value, n=1, default=NA, order_by = order))
Run Code Online (Sandbox Code Playgroud)
? 然后试着提前安排。
df %>%
arrange(group, order) %>%
group_by(group) %>%
mutate(previous = dplyr::lag(value, n=1, default=NA))
"group" "order" "value" "previous"
"a" 1 25 NA
"a" 2 43 25
"a" 3 15 43
"a" 4 22 15
"a" 5 31 22
"b" 1 11 31
"b" 2 18 11
"b" 3 37 18
"b" 4 24 37
"b" 4 9 24
Run Code Online (Sandbox Code Playgroud)
? 哪个修复了排序,但仍然忽略分组,因为 b 1 应该是 NA 而不是 31。?我是否遗漏了一些明显的东西,或者滞后/领先和 group_by 不能像这样组合?
? 它可以在 SQL 中使用
LAG(value, 1, NULL) OVER (PARTITION BY group ORDER BY order)
Run Code Online (Sandbox Code Playgroud)
? ? 如果格式很差,之前没有发布代码问题,请道歉。