dplyr 领先/落后于 group_by

Qui*_*c22 5 r lead dplyr

不明白为什么我的超前和滞后功能忽略了group by。这是一个简单的例子(实际上我需要按 5 列分组)。?

# Dummy DataSet
df <- data.frame(group = c("a","a","a","a", "a", "b", "b", "b", "b", "b"),
                 order = c(3, 4, 2, 5, 1, 1, 3, 4, 2, 4),
                 value = c(15, 22, 43, 31, 25, 11, 37, 24, 18, 9))    

"group" "order" "value"
"a" 3   15
"a" 4   22
"a" 2   43
"a" 5   31
"a" 1   25
"b" 1   11
"b" 3   37
"b" 4   24
"b" 2   18
"b" 4   9
Run Code Online (Sandbox Code Playgroud)

试过这个,但即使是 order by 在这里也不起作用

df %>%
    group_by(group) %>%
    mutate(previous = dplyr::lag(value, n=1, default=NA, order_by = order))
Run Code Online (Sandbox Code Playgroud)

? 然后试着提前安排。

df %>% 
    arrange(group, order) %>%
    group_by(group) %>% 
    mutate(previous = dplyr::lag(value, n=1, default=NA))

"group" "order" "value" "previous"
"a" 1   25  NA
"a" 2   43  25
"a" 3   15  43
"a" 4   22  15
"a" 5   31  22
"b" 1   11  31
"b" 2   18  11
"b" 3   37  18
"b" 4   24  37
"b" 4   9   24
Run Code Online (Sandbox Code Playgroud)

? 哪个修复了排序,但仍然忽略分组,因为 b 1 应该是 NA 而不是 31。?我是否遗漏了一些明显的东西,或者滞后/领先和 group_by 不能像这样组合?

? 它可以在 SQL 中使用

LAG(value, 1, NULL) OVER (PARTITION BY group ORDER BY order)
Run Code Online (Sandbox Code Playgroud)

? ? 如果格式很差,之前没有发布代码问题,请道歉。