cbc*_*cbd 3 python compare rows dataframe pandas
我有一个DataFrame,其中包含有关员工薪水的信息.它大约有900000多行.
样品:
+----+-------------+---------------+----------+
| | table_num | name | salary |
|----+-------------+---------------+----------|
| 0 | 001234 | John Johnson | 1200 |
| 1 | 001234 | John Johnson | 1000 |
| 2 | 001235 | John Johnson | 1000 |
| 3 | 001235 | John Johnson | 1200 |
| 4 | 001235 | John Johnson | 1000 |
| 5 | 001235 | Steve Stevens | 1000 |
| 6 | 001236 | Steve Stevens | 1200 |
| 7 | 001236 | Steve Stevens | 1200 |
| 8 | 001236 | Steve Stevens | 1200 |
+----+-------------+---------------+----------+
Run Code Online (Sandbox Code Playgroud)
dtypes:
table_num: string
name: string
salary: float
Run Code Online (Sandbox Code Playgroud)
我需要添加一个列,其中包含有关增加\降低工资水平的信息.我正在使用该shift()函数来比较行中的值.
主要问题在于对整个数据集中所有独特员工的过滤和迭代.
我的剧本需要大约3个半小时.
怎么做得更快?
我的剧本:
# giving us only unique combination of 'table_num' and 'name'
# since there can be same 'table_num' for different 'name'
# and same names with different 'table_num' appears sometimes
names_df = df[['table_num', 'name']].drop_duplicates()
# then extracting particular name and table_num from Series
for i in range(len(names_df)): ### Bottleneck of whole script ###
t = names_df.iloc[i,[0,1]][0]
n = names_df.iloc[i,[0,1]][1]
# using shift() and lambda to check if there difference between two rows
diff_sal = (df[(df['table_num']==t)
& ((df['name']==n))]['salary'] - df[(df['table_num']==t)
& ((df['name']==n))]['salary'].shift(1)).apply(lambda x: 1 if x>0 else (-1 if x<0 else 0))
df.loc[diff_sal.index, 'inc'] = diff_sal.values
Run Code Online (Sandbox Code Playgroud)
样本输入数据:
df = pd.DataFrame({'table_num': ['001234','001234','001235','001235','001235','001235','001236','001236','001236'],
'name': ['John Johnson','John Johnson','John Johnson','John Johnson','John Johnson', 'Steve Stevens', 'Steve Stevens', 'Steve Stevens', 'Steve Stevens'],
'salary':[1200.,1000.,1000.,1200.,1000.,1000.,1200.,1200.,1200.]})
Run Code Online (Sandbox Code Playgroud)
样本输出:
+----+-------------+---------------+----------+-------+
| | table_num | name | salary | inc |
|----+-------------+---------------+----------+-------|
| 0 | 001234 | John Johnson | 1200 | 0 |
| 1 | 001234 | John Johnson | 1000 | -1 |
| 2 | 001235 | John Johnson | 1000 | 0 |
| 3 | 001235 | John Johnson | 1200 | 1 |
| 4 | 001235 | John Johnson | 1000 | -1 |
| 5 | 001235 | Steve Stevens | 1000 | 0 |
| 6 | 001236 | Steve Stevens | 1200 | 0 |
| 7 | 001236 | Steve Stevens | 1200 | 0 |
| 8 | 001236 | Steve Stevens | 1200 | 0 |
+----+-------------+---------------+----------+-------+
Run Code Online (Sandbox Code Playgroud)
df['inc'] = df.groupby(['table_num', 'name'])['salary'].diff().fillna(0.0)
df.loc[df['inc'] > 0.0, 'inc'] = 1.0
df.loc[df['inc'] < 0.0, 'inc'] = -1.0
Run Code Online (Sandbox Code Playgroud)