use*_*392 14 python dictionary list
我有以下词典列表:
dictionary =[{'Flow': 100, 'Location': 'USA', 'Name': 'A1'},
{'Flow': 90, 'Location': 'Europe', 'Name': 'B1'},
{'Flow': 20, 'Location': 'USA', 'Name': 'A1'},
{'Flow': 70, 'Location': 'Europe', 'Name': 'B1'}]
Run Code Online (Sandbox Code Playgroud)
我想创建一个新的词典列表,其中Flow所有词典的总和值在哪里,Location并且Name是相同的.我想要的输出是:
new_dictionary =[{'Flow': 120, 'Location': 'USA', 'Name': 'A1'},
{'Flow': 160, 'Location': 'Europe', 'Name': 'B1'},]
Run Code Online (Sandbox Code Playgroud)
我怎样才能做到这一点?
cs9*_*s95 14
这是可能的,但在python中实现并不重要.我可以建议使用熊猫吗?a ,和groupby,这很简单.sumto_dict
import pandas as pd
(pd.DataFrame(dictionary)
.groupby(['Location', 'Name'], as_index=False)
.Flow.sum()
.to_dict('r'))
[{'Flow': 160, 'Location': 'Europe', 'Name': 'B1'},
{'Flow': 120, 'Location': 'USA', 'Name': 'A1'}]
Run Code Online (Sandbox Code Playgroud)
要安装,请使用pip install --user pandas.
否则,您可以使用伪通用组操作itertools.groupby.
from itertools import groupby
from operator import itemgetter
grouper = ['Location', 'Name']
key = itemgetter(*grouper)
dictionary.sort(key=key)
[{**dict(zip(grouper, k)), 'Flow': sum(map(itemgetter('Flow'), g))}
for k, g in groupby(dictionary, key=key)]
[{'Flow': 160, 'Location': 'Europe', 'Name': 'B1'},
{'Flow': 120, 'Location': 'USA', 'Name': 'A1'}]
Run Code Online (Sandbox Code Playgroud)
虽然如果可能的话我也更喜欢使用Pandas,这里是使用普通python的解决方案:
In [1]: import itertools
In [2]: dictionary =[{'Flow': 100, 'Location': 'USA', 'Name': 'A1'},
...: {'Flow': 90, 'Location': 'Europe', 'Name': 'B1'},
...: {'Flow': 20, 'Location': 'USA', 'Name': 'A1'},
...: {'Flow': 70, 'Location': 'Europe', 'Name': 'B1'}]
...:
In [3]: import operator
In [4]: key = operator.itemgetter('Location', 'Name')
In [5]: [{'Flow': sum(x['Flow'] for x in g),
...: 'Location': k[0],
...: 'Name': k[1]}
...: for k, g in itertools.groupby(sorted(dictionary, key=key), key=key)]
...:
...:
Out[5]:
[{'Flow': 160, 'Location': 'Europe', 'Name': 'B1'},
{'Flow': 120, 'Location': 'USA', 'Name': 'A1'}]
Run Code Online (Sandbox Code Playgroud)
另一种方法是使用defaultdict,它会给你一个稍微不同的表示(尽管如你所愿你可以将它转换回dicts列表):
In [11]: import collections
In [12]: cnt = collections.defaultdict(int)
In [13]: for r in dictionary:
...: cnt[(r['Location'], r['Name'])] += r['Flow']
...:
In [14]: cnt
Out[14]: defaultdict(int, {('Europe', 'B1'): 160, ('USA', 'A1'): 120})
In [15]: [{'Flow': x, 'Location': k[0], 'Name': k[1]} for k, x in cnt.items()]
Out[15]:
[{'Flow': 120, 'Location': 'USA', 'Name': 'A1'},
{'Flow': 160, 'Location': 'Europe', 'Name': 'B1'}]
Run Code Online (Sandbox Code Playgroud)
不完全是你期望的输出,但..
运用 collections.Counter()
count = Counter()
for i in dictionary:
count[i['Location'], i['Name']] += i['Flow']
print count
Run Code Online (Sandbox Code Playgroud)
会给:
Counter({ ('Europe', 'B1'): 160,
('USA', 'A1'): 120 })
Run Code Online (Sandbox Code Playgroud)
我希望这至少会给你一些想法.