如何在Tensorflow中制作2D高斯滤波器?

zep*_*rus 12 image-processing tensorflow

如何使用高斯内核在Tensorflow中实现2D低通(也称为模糊)滤波器?

zep*_*rus 25

首先定义一个标准化的2D高斯核:

def gaussian_kernel(size: int,
                    mean: float,
                    std: float,
                   ):
    """Makes 2D gaussian Kernel for convolution."""

    d = tf.distributions.Normal(mean, std)

    vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32))

    gauss_kernel = tf.einsum('i,j->ij',
                                  vals,
                                  vals)

    return gauss_kernel / tf.reduce_sum(gauss_kernel)
Run Code Online (Sandbox Code Playgroud)

接下来,使用tf.nn.conv2d将此内核与映像进行卷积:

# Make Gaussian Kernel with desired specs.
gauss_kernel = gaussian_kernel( ... )

# Expand dimensions of `gauss_kernel` for `tf.nn.conv2d` signature.
gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis]

# Convolve.
tf.nn.conv2d(image, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
Run Code Online (Sandbox Code Playgroud)