hum*_*ing 2 python timestamp average pandas
日期是日期时间的数据帧:
Column | Date
:-----------|----------------------:
A | 2018-08-05 17:06:01
A | 2018-08-05 17:06:02
A | 2018-08-05 17:06:03
B | 2018-08-05 17:06:07
B | 2018-08-05 17:06:09
B | 2018-08-05 17:06:11
Run Code Online (Sandbox Code Playgroud)
返回表是;
Column | Date
:-----------|----------------------:
A | 2018-08-05 17:06:02
B | 2018-08-05 17:06:09
Run Code Online (Sandbox Code Playgroud)
小智 7
对于你的例子。
您的数据:
df = pd.DataFrame(data=[['A', '2018-08-05 17:06:01'],
['A', '2018-08-05 17:06:02'],
['A', '2018-08-05 17:06:03'],
['B', '2018-08-05 17:06:07'],
['B', '2018-08-05 17:06:09'],
['B', '2018-08-05 17:06:11']],
columns = ['column', 'date'])
Run Code Online (Sandbox Code Playgroud)
解决方案:
df.date = pd.to_datetime(df.date).values.astype(np.int64)
df = pd.DataFrame(pd.to_datetime(df.groupby('column').mean().date))
Run Code Online (Sandbox Code Playgroud)
输出:
date
column
A 2018-08-05 17:06:02
B 2018-08-05 17:06:09
Run Code Online (Sandbox Code Playgroud)
我希望它会有所帮助。