pandas groupby 不保留顺序?

Kha*_*oti 6 python dataframe pandas

我在 pandas 中有以下数据集:

import pandas as pd

seq = [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]
event_no = [5, 5, 5, 6, 6, 6, 4, 4, 4, 3, 3, 3, 1, 1, 1, 2, 2, 2]
points_no = [1, 1, 1, None, None, None, 1, 1, 1, 1, 1, 1, None, None, None, 1, 1, 1]

df = pd.DataFrame({"seq" : seq, "event_no": event_no, "points_no": points_no})

seq event_no    points_no
    0   1   5   1.0
    1   1   5   1.0
    2   1   5   1.0
    3   1   6   NaN
    4   1   6   NaN
    5   1   6   NaN
    6   1   4   1.0
    7   1   4   1.0
    8   1   4   1.0
    9   2   3   1.0
    10  2   3   1.0
    11  2   3   1.0
    12  2   1   NaN
    13  2   1   NaN
    14  2   1   NaN
    15  2   2   1.0
    16  2   2   1.0
    17  2   2   1.0
Run Code Online (Sandbox Code Playgroud)

seq那时我将其分组event_no,然后求和points_no......

df2 = df.groupby(['seq', 'event_no']).points_no.sum().reset_index()
Run Code Online (Sandbox Code Playgroud)

下面的输出不保留 column 中数据的原始索引顺序event_no,而是按升序排序:

seq event_no    points_no
0   1   4   3.0
1   1   5   3.0
2   1   6   0.0
3   2   1   0.0
4   2   2   3.0
5   2   3   3.0
Run Code Online (Sandbox Code Playgroud)

我真正想要的是这个输出:

seq event_no    points_no
0   1   5   3.0
1   1   6   0.0
2   1   4   3.0
3   2   3   3.0
4   2   1   0.0
5   2   2   3.0
Run Code Online (Sandbox Code Playgroud)

有没有办法在保留索引顺序的同时获得所述结果?

rud*_*vic 7

使用参数sort=False

df.groupby(['seq', 'event_no'], sort=False).points_no.sum().reset_index()
Run Code Online (Sandbox Code Playgroud)